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Review: Basic Performance Concepts

• Response Time or Latency: Time to perform an operation

• Bandwidth or Throughput: Rate at which operations are 
performed (op/s)

– Files: NB/s, Networks: Mb/s, Arithmetic: GFLOP/s

• Start up or “Overhead”: time to initiate an operation

• Most I/O operations are roughly linear in n bytes
– Latency(n) = Overhead + n/Bandwidth
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Example (Fast Network)
• Consider a 1 Gb/s link (B = 125 MB/s)

– With a startup cost S = 1 ms

– Latency(n) = S + n/B
– Bandwidth = n/(S + n/B) = B*n/(B*S + n) = B/(B*S/n + 1)
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Example (Fast Network)
• Consider a 1 Gb/s link (B = 125 MB/s)

– With a startup cost S = 1 ms

– Bandwidth = B/(B*S/n + 1)
– half-power point occurs at n=S*B à Bandwidth = B/2
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Example: at 10 ms startup (like Disk)
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What Determines Peak BW for I/O ?

• Bus Speed
– PCI-X: 1064 MB/s = 133 MHz x 64 bit (per lane)
– ULTRA WIDE SCSI: 40 MB/s
– Serial Attached SCSI & Serial ATA & IEEE 1394 (firewire): 1.6 Gb/s 

full duplex (200 MB/s)
– USB 3.0 – 5 Gb/s
– Thunderbolt 3 – 40 Gb/s 

• Device Transfer Bandwidth
– Rotational speed of disk
– Write / Read rate of NAND flash
– Signaling rate of network link

• Whatever is the bottleneck in the path…
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Storage Devices

• Magnetic disks
– Storage that rarely becomes corrupted
– Large capacity at low cost
– Block level random access (except for SMR – later!)
– Slow performance for random access
– Better performance for sequential access

• Flash memory
– Storage that rarely becomes corrupted
– Capacity at intermediate cost (5-20x disk)
– Block level random access
– Good performance for reads; worse for random writes
– Erasure requirement in large blocks
– Wear patterns issue
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The Amazing Magnetic Disk

Track

Sector

Head Arm

Arm Assembly

Platter

Surface

Surface

Motor Motor

Spindle• Unit of Transfer: Sector
– Ring of sectors form a track
– Stack of tracks form a cylinder
– Heads position on cylinders

• Disk Tracks ~ 1µm (micron) wide
– Wavelength of light is ~ 0.5µm
– Resolution of human eye: 50µm
– 100K tracks on a typical 2.5” disk

• Separated by unused guard regions
– Reduces likelihood neighboring tracks 

are corrupted during writes (still a small 
non-zero chance)
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Review: Magnetic Disks

• Cylinders: all the tracks under the 
head at a given point on all surface

• Read/write data is a three-stage process:
– Seek time: position the head/arm over the proper track
– Rotational latency: wait for desired sector to rotate under r/w head
– Transfer time: transfer a block of bits (sector) under r/w head

Sector
Track

Cylinder
Head

Platter

Seek time = 4-8ms
One rotation = 1-2ms 
(3600-7200 RPM)
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Review: Magnetic Disks

• Cylinders: all the tracks under the 
head at a given point on all surface

• Read/write data is a three-stage process:
– Seek time: position the head/arm over the proper track
– Rotational latency: wait for desired sector to rotate under r/w head
– Transfer time: transfer a block of bits (sector) under r/w head
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Disk Latency = Queueing Time + Controller time +
Seek Time + Rotation Time + Xfer Time
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Disk Performance Example
• Assumptions:

– Ignoring queuing and controller times for now
– Avg seek time of 5ms, 
– 7200RPM Þ Time for rotation: 60000 (ms/minute) / 7200(rev/min) ~= 8ms
– Transfer rate of 4MByte/s, sector size of 1 Kbyte Þ

1024 bytes/4×106 (bytes/s) = 256 × 10-6 sec  @ .26 ms
• Read sector from random place on disk:

– Seek (5ms) + Rot. Delay (4ms) + Transfer (0.26ms)
– Approx 10ms to fetch/put data: 100 KByte/sec

• Read sector from random place in same cylinder:
– Rot. Delay (4ms) + Transfer (0.26ms)
– Approx 5ms to fetch/put data: 200 KByte/sec

• Read next sector on same track:
– Transfer (0.26ms): 4 MByte/sec

• Key to using disk effectively (especially for file systems) is 
to minimize seek and rotational delays
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(Lots of) Intelligence in the Controller
• Sectors contain sophisticated error correcting codes

– Disk head magnet has a field wider than track
– Hide corruptions due to neighboring track writes

• Sector sparing
– Remap bad sectors transparently to spare sectors on the same surface

• Slip sparing
– Remap all sectors (when there is a bad sector) to preserve sequential 

behavior

• Track skewing
– Sector numbers offset from one track to the next, to allow for disk 

head movement for sequential ops

• …
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Solid State Disks (SSDs)

• 1995 – Replace rotating magnetic media with non-volatile memory 
(battery backed DRAM)

• 2009 – Use NAND Multi-Level Cell (2 or 3-bit/cell) flash memory
– Sector (4 KB page) addressable, but stores 4-64 “pages” per memory block
– Trapped electrons distinguish between 1 and 0

• No moving parts (no rotate/seek motors)
– Eliminates seek and rotational delay (0.1-0.2ms access time)
– Very low power and lightweight
– Limited “write cycles”

• Rapid advances in capacity and cost ever since!
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SSD Architecture – Reads

Read 4 KB Page: ~25 usec
– No seek or rotational latency
– Transfer time: transfer a 4KB page

» SATA: 300-600MB/s => ~4 x103 b / 400 x 106 bps => 10 us
– Latency = Queuing Time + Controller time + Xfer Time
– Highest Bandwidth: Sequential OR Random reads
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SSD Architecture – Writes
• Writing data is complex! (~200μs – 1.7ms )

– Can only write empty pages in a block
– Erasing a block takes ~1.5ms
– Controller maintains pool of empty blocks by coalescing 

used pages (read, erase, write), also reserves some % of 
capacity

• Rule of thumb: writes 10x reads, erasure 10x writes

https://en.wikipedia.org/wiki/Solid-state_drive
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Amusing calculation: is a full Kindle heavier than an empty one?

• Actually, “Yes”, but not by much
• Flash works by trapping electrons:

– So, erased state lower energy than written state
• Assuming that:

– Kindle has 4GB flash
– ½ of all bits in full Kindle are in high-energy state
– High-energy state about 10-15 joules higher
– Then: Full Kindle is 1 attogram (10-18gram) heavier 

(Using E = mc2)
• Of course, this is less than most sensitive scale can measure 

(it can measure 10-9 grams)
• Of course, this weight difference overwhelmed by battery 

discharge, weight from getting warm, ….
• According to John Kubiatowicz (New York Times, Oct 24, 2011)
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SSD Summary

• Pros (vs. hard disk drives):
– Low latency, high throughput (eliminate seek/rotational delay)
– No moving parts: 

» Very light weight, low power, silent, very shock insensitive
– Read at memory speeds (limited by controller and I/O bus)

• Cons
– Small storage (0.1-0.5x disk), expensive (3-20x disk)

» Hybrid alternative: combine small SSD with large HDD
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SSD Summary

• Pros (vs. hard disk drives):
– Low latency, high throughput (eliminate seek/rotational delay)
– No moving parts: 

» Very light weight, low power, silent, very shock insensitive
– Read at memory speeds (limited by controller and I/O bus)

• Cons
– Small storage (0.1-0.5x disk), expensive (3-20x disk)

» Hybrid alternative: combine small SSD with large HDD
– Asymmetric block write performance: read pg/erase/write pg

» Controller garbage collection (GC) algorithms have major effect on 
performance

– Limited drive lifetime 
» 1-10K writes/page for MLC NAND
» Avg failure rate is 6 years, life expectancy is 9–11 years

• These are changing rapidly!

No 
longer 
true!
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Seagate Enterprise
10 TB (2016)
• 7 platters, 14 heads
• 7200 RPMs
• 6 Gbps SATA /12Gbps SAS interface
• 220MB/s transfer rate, cache size: 256MB 
• Helium filled: reduce friction and power usage
• Price: $500 ($0.05/GB)

IBM Personal Computer/AT (1986)
• 30 MB hard disk
• 30-40ms seek time
• 0.7-1 MB/s (est.)
• Price: $500 ($17K/GB, 340,000x more expensive !!)
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Largest SSDs

• 60TB (2016)
• Dual port: 16Gbs 
• Seq reads: 1.5GB/s
• Seq writes: 1GB/s
• Random Read Ops (IOPS): 150K
• Price: ~ $20K ($0.33/GB)
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I/O Performance

Response Time = Queue + I/O device service time

User
Thread

Queue
[OS Paths]

C
ontroller

I/O
device

• Performance of I/O subsystem
– Metrics: Response Time, Throughput 
– Effective BW per op = transfer size / response time

» EffBW(n) = n / (S + n/B) = B / (1 + SB/n )
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I/O Performance

Response Time = Queue + I/O device service time
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• Performance of I/O subsystem
– Metrics: Response Time, Throughput 
– Effective BW per op = transfer size / response time

» EffBW(n) = n / (S + n/B) = B / (1 + SB/n )
– Contributing factors to latency:

» Software paths (can be loosely modeled by a queue)
» Hardware controller
» I/O device service time

• Queuing behavior:
– Can lead to big increases of latency as utilization increases
– Solutions?
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A Simple Deterministic World

• Assume requests arrive at regular intervals, take a fixed time to 
process, with plenty of time between …

• Service rate (μ = 1/TS)  - operations per sec
• Arrival rate: (λ =  1/TA) - requests per second 
• Utilization: U = λ/μ , where λ < μ
• Average rate is the complete story

Queue Serverarrivals departures

TQ TS

TA TA TA

TSTq
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A Ideal Linear World

• What does the queue wait time look like?
– Grows unbounded at a rate ~ (Ts/TA) till request rate subsides
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A Bursty World

• Requests arrive in a burst, must queue up till served
• Same average arrival time, but almost all of the requests 

experience large queue delays
• Even though average utilization is low

Queue Serverarrivals departures

TQ TS

Q depth

Server

Arrivals
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• Elegant mathematical framework if you start with exponential 
distribution

– Probability density function of a continuous random variable with a 
mean of 1/λ

– f(x) = λe-λx

– “Memoryless”
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Likelihood of an event occurring 
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we’ve been waiting

So how do we model the burstiness of arrival?

Lots of short arrival 
intervals (i.e., high 
instantaneous rate)
Few long gaps (i.e., low 

instantaneous rate)
x (λ)

mean arrival interval (1/λ)
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Background: General Use of Random Distributions

• Server spends variable time (T) with customers
– Mean (Average) m = Sp(T)´T
– Variance (stddev2) s2 = Sp(T)´(T-m)2 = Sp(T)´T2-m2

– Squared coefficient of variance: C = s2/m2

Aggregate description of the distribution

• Important values of C:
– No variance or deterministic Þ C=0 
– “Memoryless” or exponential Þ C=1

» Past tells nothing about future
» Poisson process – purely or completely random process
» Many complex systems (or aggregates)

are well described as memoryless 
– Disk response times C » 1.5 (majority seeks < average)

Mean 
(m)

mean

Memoryless

Distribution
of service times

s
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Administrivia

• Midterm 2 coming up on Mon 10/29 5:00-6:30PM
– All topics up to and including Lecture 17 

» Focus will be on Lectures 11 – 17 and associated readings
» Projects 1 and 2
» Homework 0 – 2  

– Closed book
– 2 pages hand-written notes both sides
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BREAK
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DeparturesArrivals
Queuing System

Introduction to Queuing Theory

• What about queuing time??
– Let’s apply some queuing theory
– Queuing Theory applies to long term, steady state behavior Þ

Arrival rate = Departure rate

• Arrivals characterized by some probabilistic distribution

• Departures characterized by some probabilistic distribution

Queue

C
ontroller

Disk
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Little’s Law

• In any stable system 
– Average arrival rate = Average departure rate 

• The average number of jobs/tasks in the system (N) is equal 
to arrival time / throughput (λ) times the response time (L) 

– N (jobs) = λ (jobs/s) x L (s)

• Regardless of structure, bursts of requests, variation in service
– Instantaneous variations, but it washes out in the average
– Overall, requests match departures

arrivals departuresN
λ

L
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Example

λ = 1
L = 5

0 1 2 3 4 5 6 7 8 169 10 11 12 13 14 15 time

Jobs

L = 5

N = 5 jobs

A: N = λ x L
• E.g., N = λ x L = 5
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Little’s Theorem: Proof Sketch

time

T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t

Job i

L(1)
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Little’s Theorem: Proof Sketch

time
T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t

What is the system occupancy, i.e., average 
number of jobs in the system?

Job i
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Little’s Theorem: Proof Sketch

time
T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t
S(i) = L(i) * 1 = L(i)

Job i

S(1)
S(2)

S =  S(1) + S(2) + … + S(k)  = L(1) + L(2) + … + L(k)

S(k)



Lec 17.3610/24/18 CS162 © UCB Fall 2018

Little’s Theorem: Proof Sketch

time
T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t
S(i) = L(i) * 1 = L(i)

Average occupancy (Navg) = S/T 

Job i

S= area
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Little’s Theorem: Proof Sketch

time
T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t
S(i) = L(i) * 1 = L(i)

Job i

S(1)
S(2)

Navg = S/T = (L(1) + … + L(k))/T

S(k)
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Little’s Theorem: Proof Sketch

time
T

arrivals departuresN
λ

L

N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t
S(i) = L(i) * 1 = L(i)

Job i

S(1)
S(2)

Navg = (L(1) + … + L(k))/T = (Ntotal/T)*(L(1) + … + L(k))/Ntotal

S(k)
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Little’s Theorem: Proof Sketch

time
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L(i) = response time of job i
N(t) = number of jobs in system

at time t
S(i) = L(i) * 1 = L(i)

Job i
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Navg = (Ntotal/T)*(L(1) + … + L(k))/Ntotal = λavg× Lavg

S(k)
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Little’s Theorem: Proof Sketch

time
T

arrivals departuresN
λ
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N(t)

L(i) = response time of job i
N(t) = number of jobs in system

at time t
S(i) = L(i) * 1 = L(i)

Job i

S(1)
S(2)

Navg = λavg× Lavg

S(k)
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A Little Queuing Theory: Some Results (1/2) 
• Assumptions:

– System in equilibrium; No limit to the queue
– Time between successive arrivals is random and memoryless

• Parameters that describe our system:
– l: mean number of arriving customers/second
– Tser: mean time to service a customer (“m”)
– C: squared coefficient of variance = s2/m2

– μ: service rate = 1/Tser
– u: server utilization (0£u£1): u = l/μ = l ´ Tser

• Parameters we wish to compute:
– Tq: Time spent in queue
– Lq: Length of queue = l ´ Tq (by Little’s law)

Arrival Rate
 l

Queue Server
Service Rate

 μ=1/Tser
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A Little Queuing Theory: Some Results (2/2)

• Parameters that describe our system:
– l: mean number of arriving customers/second l= 1/TA
– Tser: mean time to service a customer (“m”)
– C: squared coefficient of variance = s2/m2

– μ: service rate = 1/Tser
– u: server utilization (0£u£1): u = l/μ = l ´ Tser

• Parameters we wish to compute:
– Tq: Time spent in queue
– Lq: Length of queue = l ´ Tq (by Little’s law)

• Results (M: Poisson arrival process, 1 server):
– Memoryless service time distribution (C = 1): Called an M/M/1 queue

» Tq = Tser x u/(1 – u)
– General service time distribution (no restrictions): Called an M/G/1 queue

» Tq = Tser x ½(1+C) x u/(1 – u))

Arrival Rate
 l

Queue Server
Service Rate

 μ=1/Tser
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A Little Queuing Theory: An Example (1/2)

• Example Usage Statistics:
– User requests 10 x 8KB disk I/Os per second
– Requests & service exponentially distributed (C=1.0)
– Avg. service = 20 ms (From controller + seek + rotation + transfer)

• Questions: 
– How utilized is the disk (server utilization)?        Ans:, u = lTser
– What is the average time spent in the queue?    Ans: Tq
– What is the number of requests in the queue?   Ans: Lq
– What is the avg response time for disk request? Ans: Tsys = Tq + Tser
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A Little Queuing Theory: An Example (2/2)
• Questions: 

– How utilized is the disk (server utilization)?        Ans:, u = lTser
– What is the average time spent in the queue?    Ans: Tq
– What is the number of requests in the queue?   Ans: Lq
– What is the avg response time for disk request? Ans: Tsys = Tq + Tser

• Computation:
l (avg # arriving customers/s) = 10/s
Tser (avg time to service customer) = 20 ms (0.02s)
u (server utilization) = l x Tser= 10/s x .02s = 0.2
Tq (avg time/customer in queue) = Tser x u/(1 – u) 

= 20 x 0.2/(1-0.2) = 20 x 0.25 = 5 ms (0 .005s)
Lq (avg length of queue) = l x Tq=10/s x .005s = 0.05s
Tsys (avg time/customer in system) =Tq + Tser= 25 ms



Lec 17.4510/24/18 CS162 © UCB Fall 2018

Queuing Theory Resources

• Resources page contains Queueing Theory Resources 
(under Readings):

– Scanned pages from Patterson and Hennessy book that gives 
further discussion and simple proof for general equation: 
https://cs162.eecs.berkeley.edu/static/readings/patterson_queue.
pdf

– A complete website full of resources: 
http://web2.uwindsor.ca/math/hlynka/qonline.html

• Some previous midterms with queueing theory questions

• Assume that Queueing Theory is fair game for Midterm III
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Summary
• Disk Performance: 

– Queuing time + Controller + Seek + Rotational + Transfer
– Rotational latency: on average ½ rotation
– Transfer time: spec of disk depends on rotation speed and bit storage density

• Devices have complex interaction and performance characteristics
– Response time (Latency) = Queue + Overhead + Transfer

» Effective BW = BW * T/(S+T)
– HDD: Queuing time + controller + seek + rotation + transfer
– SDD: Queuing time + controller + transfer (erasure & wear)

• Systems (e.g., file system) designed to optimize performance and reliability
– Relative to performance characteristics of underlying device

• Bursts & High Utilization introduce queuing delays
• Queuing Latency:

– M/M/1 and M/G/1 queues: simplest to analyze
– As utilization approaches 100%, latency ® ¥

Tq = Tser x ½(1+C) x u/(1 – u))
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Optimize I/O Performance

• How to improve performance?
– Make everything faster J
– More decoupled (Parallelism) systems
– Do other useful work while waiting

» Multiple independent buses or controllers
– Optimize the bottleneck to increase service rate

» Use the queue to optimize the service
• Queues absorb bursts and smooth the flow
• Add admission control (finite queues)

– Limits delays, but may introduce unfairness and livelock

Response Time = Queue + I/O device service time

User
Thread
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[OS Paths]
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ontroller
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When is Disk Performance Highest?

• When there are big sequential reads, or
• When there is so much work to do that they can be piggy 

backed (reordering queues—one moment)

• OK to be inefficient when things are mostly idle
• Bursts are both a threat and an opportunity
• <your idea for optimization goes here>

– Waste space for speed?

• Other techniques:
– Reduce overhead through user level drivers
– Reduce the impact of I/O delays by doing other useful work in the 

meantime


