CSI 62
 Operating Systems and Systems Programming
 Lecture 17

Performance
 Storage Devices, Queueing Theory

October 24, 2018
Prof. Ion Stoica
http://cs|62.eecs.Berkeley.edu

Review: Basic Performance Concepts

- Response Time or Latency: Time to perform an operation
- Bandwidth or Throughput: Rate at which operations are performed (op/s)
- Files: NB/s, Networks: Mb/s, Arithmetic: GFLOP/s
- Start up or "Overhead": time to initiate an operation
- Most I/O operations are roughly linear in n bytes
- Latency(n) = Overhead + n/Bandwidth

Example (Fast Network)

- Consider a $1 \mathrm{~Gb} / \mathrm{s} \operatorname{link}(B=125 \mathrm{MB} / \mathrm{s})$
- With a startup cost $S=1 \mathrm{~ms}$

- Latency(n) $=S+n / B$
- Bandwidth $=n /(S+n / B)=B * n /(B * S+n)=B /(B * S / n+1)$

Example (Fast Network)

- Consider a $1 \mathrm{~Gb} / \mathrm{s} \operatorname{link}(B=125 \mathrm{MB} / \mathrm{s})$
- With a startup cost $S=1 \mathrm{~ms}$

- Bandwidth = B/(B*S/n + I)
- half-power point occurs at $\mathrm{n}=\mathrm{S} * \mathrm{~B} \rightarrow$ Bandwidth $=\mathrm{B} / 2$

Example: at 10 ms startup (like Disk)

What Determines Peak BW for I/O ?

- Bus Speed
- PCI-X: $1064 \mathrm{MB} / \mathrm{s}=133 \mathrm{MHz} \times 64$ bit (per lane)
- ULTRA WIDE SCSI: 40 MB/s
- Serial Attached SCSI \& Serial ATA \& IEEE I 394 (firewire): I. 6 Gb/s full duplex ($200 \mathrm{MB} / \mathrm{s}$)
- USB 3.0 - 5 Gb/s
- Thunderbolt 3 - $40 \mathrm{~Gb} / \mathrm{s}$
- Device Transfer Bandwidth
- Rotational speed of disk
- Write / Read rate of NAND flash
- Signaling rate of network link
- Whatever is the bottleneck in the path...

Storage Devices

- Magnetic disks
- Storage that rarely becomes corrupted
- Large capacity at low cost
- Block level random access (except for SMR - later!)
- Slow performance for random access
- Better performance for sequential access
- Flash memory
- Storage that rarely becomes corrupted
- Capacity at intermediate cost (5-20x disk)
- Block level random access
- Good performance for reads; worse for random writes
- Erasure requirement in large blocks
- Wear patterns issue

The Amazing Magnetic Disk

- Unit of Transfer: Sector
- Ring of sectors form a track
- Stack of tracks form a cylinder
- Heads position on cylinders

- Separated by unused guard regions
- Reduces likelihood neighboring tracks are corrupted during writes (still a small non-zero chance)

Review: Magnetic Disks

- Cylinders: all the tracks under the head at a given point on all surface
- Read/write data is a three-stage process:

- Seek time: position the head/arm over the proper track
- Rotational latency: wait for desired sector to rotate under r/w head
- Transfer time: transfer a block of bits (sector) under r/w head

Seek time $=4-8 \mathrm{~ms}$ One rotation = 1-2ms (3600-7200 RPM)

CSI62 © UCB Fall 2018

Review: Magnetic Disks

- Cylinders: all the tracks under the head at a given point on all surface
- Read/write data is a three-stage process:

- Seek time: position the head/arm over the proper track
- Rotational latency: wait for desired sector to rotate under r/w head
- Transfer time: transfer a block of bits (sector) under r/w head

Disk Performance Example

- Assumptions:
- Ignoring queuing and controller times for now
- Avg seek time of 5 ms ,
-7200 RPM \Rightarrow Time for rotation: 60000 ($\mathrm{ms} /$ minute) $/ 7200(\mathrm{rev} / \mathrm{min}) \sim=8 \mathrm{~ms}$
- Transfer rate of 4MByte/s, sector size of I Kbyte \Rightarrow 1024 bytes $/ 4 \times 10^{6}(\mathrm{bytes} / \mathrm{s})=256 \times 10^{-6} \mathrm{sec} \cong .26 \mathrm{~ms}$
- Read sector from random place on disk:
- Seek (5ms) + Rot. Delay (4ms) + Transfer (0.26ms)
- Approx IOms to fetch/put data: 100 KByte/sec
- Read sector from random place in same cylinder:
- Rot. Delay (4ms) + Transfer (0.26ms)
- Approx 5 ms to fetch/put data: $200 \mathrm{KByte} / \mathrm{sec}$
- Read next sector on same track:
- Transfer (0.26 ms): 4 MByte/sec
- Key to using disk effectively (especially for file systems) is to minimize seek and rotational delays

(Lots of) Intelligence in the Controller

- Sectors contain sophisticated error correcting codes
- Disk head magnet has a field wider than track
- Hide corruptions due to neighboring track writes
- Sector sparing
- Remap bad sectors transparently to spare sectors on the same surface
- Slip sparing
- Remap all sectors (when there is a bad sector) to preserve sequential behavior
- Track skewing
- Sector numbers offset from one track to the next, to allow for disk head movement for sequential ops

Solid State Disks (SSDs)

- 1995 - Replace rotating magnetic media with non-volatile memory (battery backed DRAM)
- 2009 - Use NAND Multi-Level Cell (2 or 3-bit/cell) flash memory
- Sector (4 KB page) addressable, but stores 4-64 "pages" per memory block
- Trapped electrons distinguish between I and 0
- No moving parts (no rotate/seek motors)
- Eliminates seek and rotational delay (0.1-0.2ms access time)
- Very low power and lightweight
- Limited "write cycles"
- Rapid advances in capacity and cost ever since!

SSD Architecture - Reads

»SATA: $300-600 \mathrm{MB} / \mathrm{s}=>\sim 4 \times 10^{3} \mathrm{~b} / 400 \times 10^{6} \mathrm{bps}=>10$ us

- Latency $=$ Queuing Time + Controller time + Xfer Time
- Highest Bandwidth: Sequential OR Random reads

SSD Architecture - Writes

- Writing data is complex! ($\sim 200 \mu \mathrm{~s}-1.7 \mathrm{~ms}$)
- Can only write empty pages in a block
- Erasing a block takes $\sim 1.5 \mathrm{~ms}$
- Controller maintains pool of empty blocks by coalescing used pages (read, erase, write), also reserves some \% of capacity
- Rule of thumb: writes $10 \times$ reads, erasure $10 \times$ writes

Amusing calculation: is a full Kindle heavier than an empty one?

- Actually, "Yes", but not by much
- Flash works by trapping electrons:
- So, erased state lower energy than written state
- Assuming that:
- Kindle has 4GB flash
- $1 / 2$ of all bits in full Kindle are in high-energy state
- High-energy state about 10^{-15} joules higher
- Then: Full Kindle is I attogram (10^{-18} gram) heavier (Using E = mc ${ }^{2}$)
- Of course, this is less than most sensitive scale can measure (it can measure 10^{-9} grams)
- Of course, this weight difference overwhelmed by battery discharge, weight from getting warm,
- According to John Kubiatowicz (New York Times, Oct 24, 2011)

SSD Summary

- Pros (vs. hard disk drives):
- Low latency, high throughput (eliminate seek/rotational delay)
- No moving parts:
» Very light weight, low power, silent, very shock insensitive
- Read at memory speeds (limited by controller and I/O bus)
- Cons
- Small storage (0.1-0.5x disk), expensive (3-20x disk)
» Hybrid alternative: combine small SSD with large HDD

SSD Summary

- Pros (vs. hard disk drives):
- Low latency, high throughput (eliminate seek/rotational delay)
- No moving parts:
» Very light weight, low power, silent, very shock insensitive
- Read at memory speeds (limited by controller and I/O bus)
- Cons

Small storage ($0.1-0.5 \times$ disk) , expensive (3-LUX वISk)
» Hybrid alternative: combine small SSD with large HDD

- Asymmetric block write performance: read pg/erase/write pg
» Controller garbage collection (GC) algorithms have major effect on performance
- Limited drive lifetime
» I-IOK writes/page for MLC NAND
» Avg failure rate is 6 years, life expectancy is $9-11$ years
- These are changing rapidly!

Seagate Enterprise

10 TB (2016)

- 7 platters, 14 heads
- 7200 RPMs
- 6 Gbps SATA /I2Gbps SAS interface
- $220 \mathrm{MB} /$ s transfer rate, cache size: 256 MB

$\varrho_{\text {seagate }}$
 Enterprise Capacity 3.5 HDD
 10

- Helium filled: reduce friction and power usage
- Price: \$500 (\$0.05/GB)

IBM Personal Computer/AT (I986)

- 30 MB hard disk
- 30-40ms seek time
- 0.7-I MB/s (est.)
- Price: $\$ 500$ (\$17K/GB, 340,000x more expensive !!)

Largest SSDs

- 60TB (2016)
- Dual port: 16 Gbs
- Seq reads: $1.5 \mathrm{~GB} / \mathrm{s}$
- Seq writes: I GB/s

- Random Read Ops (IOPS): I50K
- Price: ~ \$20K (\$0.33/GB)

I/O Performance

» $\operatorname{EffBW}(n)=n /(S+n / B)=B /(I+S B / n)$
 time per op

Fixed overhead

I/O Performance

- Effective BW per op = transfer size / response time
» $\operatorname{EffBW}(n)=n /(S+n / B)=B /(I+S B / n)$
- Contributing factors to latency:
» Software paths (can be loosely modeled by a queue)
» Hardware controller
» I/O device service time
- Queuing behavior:
- Can lead to big increases of latency as utilization increases 10/24/18 Solutions?

A Simple Deterministic World

- Assume requests arrive at regular intervals, take a fixed time to process, with plenty of time between ...
- Service rate ($\mu=1 / T_{S}$) - operations per sec
- Arrival rate: $\left(\lambda=I / T_{A}\right)$ - requests per second
- Utilization: $\cup=\lambda / \mu$, where $\lambda<\mu$
- Average rate is the complete story

A Ideal Linear World

- What does the queue wait time look like?
- Grows unbounded at a rate $\sim\left(T_{s} / T_{A}\right)$ till request rate subsides

A Bursty World

Arrivals

- Requests arrive in a burst, must queue up till served
- Same average arrival time, but almost all of the requests experience large queue delays
- Even though average utilization is low

So how do we model the burstiness of arrival?

- Elegant mathematical framework if you start with exponential distribution
- Probability density function of a continuous random variable with a mean of I / λ
$-f(x)=\lambda e^{-\lambda x}$
- "Memoryless"

Likelihood of an event occurring is independent of how long we've been waiting Lots of short arrival intervals (i.e., high instantaneous rate)
Few long gaps (i.e., low instantaneous rate)

Background: General Use of Random Distributions

- Server spends variable time (T) with customers
- Mean (Average) $m=\Sigma p(T) \times T$
- Variance (stddev ${ }^{2}$) $\sigma^{2}=\Sigma p(T) \times(T-m)^{2}=\Sigma p(T) \times T^{2}-m^{2}$
- Squared coefficient of variance: $C=\sigma^{2} / \mathrm{m}^{2}$

Aggregate description of the distribution

Distribution of service times

- Important values of C:
- No variance or deterministic $\Rightarrow C=0$
- "Memoryless" or exponential $\Rightarrow \mathrm{C}=1$
» Past tells nothing about future
» Poisson process - purely or completely random process
» Many complex systems (or aggregates) are well described as memoryless

- Disk response times $C \approx 1.5$ (majority seeks < average)

Administrivia

- Midterm 2 coming up on Mon I0/29 5:00-6:30PM
- All topics up to and including Lecture 17
» Focus will be on Lectures II - 17 and associated readings
» Projects I and 2
» Homework 0 - 2
- Closed book
- 2 pages hand-written notes both sides

BREAK

Introduction to Queuing Theory

- What about queuing time??
- Let's apply some queuing theory
- Queuing Theory applies to long term, steady state behavior \Rightarrow Arrival rate $=$ Departure rate
- Arrivals characterized by some probabilistic distribution
- Departures characterized by some probabilistic distribution

Little's Law

- In any stable system
- Average arrival rate $=$ Average departure rate
- The average number of jobs/tasks in the system (N) is equal to arrival time / throughput (λ) times the response time (L)
$-N(j o b s)=\lambda(j o b s / s) \times L(s)$
- Regardless of structure, bursts of requests, variation in service
- Instantaneous variations, but it washes out in the average
- Overall, requests match departures

Example

Little's Theorem: Proof Sketch

Little's Theorem: Proof Sketch

Job i $\uparrow \mathrm{L}(\mathrm{i})=$ response time of job i $\mathrm{N}(\mathrm{t})=$ number of jobs in system

What is the system occupancy, i.e., average number of jobs in the system?

Little's Theorem: Proof Sketch

A Little Queuing Theory: Some Results (1/2)

- Assumptions:
- System in equilibrium; No limit to the queue
- Time between successive arrivals is random and memoryless

- Parameters that describe our system:
$-\lambda$: mean number of arriving customers/second
- $\mathrm{T}_{\text {ser }}$ ' mean time to service a customer (" m ")
- C: \quad squared coefficient of variance $=\sigma^{2} / \mathrm{m}^{2}$
$-\mu: \quad$ service rate $=I / T_{\text {ser }}$
- u: \quad server utilization $(0 \leq u \leq 1): u=\lambda / \mu=\lambda \times T_{\text {ser }}$
- Parameters we wish to compute:
$-\mathrm{T}_{\mathrm{q}}$: \quad Time spent in queue
$-L_{q}$: Length of queue $=\lambda \times T_{q}$ (by Little's law)

A Little Queuing Theory: Some Results (2/2)

- Parameters that describe our system:
$-\lambda$: mean number of arriving customers/second $\lambda=1 / T_{\mathrm{A}}$
$-T_{\text {ser. }}$ ' mean time to service a customer (" m ")
- C: \quad squared coefficient of variance $=\sigma^{2} / \mathrm{m}^{2}$
$-\mu: \quad$ service rate $=1 / T_{\text {ser }}$
$-u: \quad$ server utilization $(0 \leq u \leq 1): u=\lambda / \mu=\lambda \times T_{\text {ser }}$
- Parameters we wish to compute:
$-\mathrm{T}_{\mathrm{q}}$: \quad Time spent in queue
$-\mathrm{L}_{\mathrm{q}}: \quad$ Length of queue $=\lambda \times \mathrm{T}_{\mathrm{q}}$ (by Little's law)
- Results (M: Poisson arrival process, I server):
- Memoryless service time distribution $(C=1)$: Called an $M / M / I$ queue

$$
\gg \mathrm{T}_{\mathrm{q}}=\mathrm{T}_{\mathrm{ser}} \times \mathrm{u} /(\mathrm{I}-\mathrm{u})
$$

- General service time distribution (no restrictions): Called an M/G/I queue

$$
>T_{\mathrm{q}}=T_{\text {ser }} \times 1 / 2(I+C) \times u /(1-u)
$$

A Little Queuing Theory: An Example (I/2)

- Example Usage Statistics:
- User requests $10 \times 8 \mathrm{~KB}$ disk I/Os per second
- Requests \& service exponentially distributed ($\mathrm{C}=1.0$)
- Avg. service $=20 \mathrm{~ms}$ (From controller + seek + rotation + transfer $)$
- Questions:
- How utilized is the disk (server utilization)? Ans:, $u=\lambda T_{\text {ser }}$
- What is the average time spent in the queue? Ans: T_{q}
- What is the number of requests in the queue? Ans: L_{q}
- What is the avg response time for disk request? Ans: $T_{\text {sys }}=T_{q}+T_{\text {ser }}$

A Little Queuing Theory: An Example (2/2)

- Questions:
- How utilized is the disk (server utilization)? Ans:, $u=\lambda T_{\text {ser }}$
- What is the average time spent in the queue? Ans: T_{q}
- What is the number of requests in the queue? Ans: L_{q}
- What is the avg response time for disk request? Ans: $T_{\text {sys }}=T_{q}+T_{\text {ser }}$
- Computation:
$\lambda \quad($ avg $\#$ arriving customers $/ \mathrm{s})=10 / \mathrm{s}$
$T_{\text {ser }}$ (avg time to service customer) $=20 \mathrm{~ms}(0.02 \mathrm{~s})$
$u \quad\left(\right.$ server utilization) $=\lambda \times T_{\text {ser }}=10 / \mathrm{s} \times .02 \mathrm{~s}=0.2$
T_{q} (avg time/customer in queue) $=\mathrm{T}_{\text {ser }} \times \mathrm{u} /(1-\mathrm{u})$

$$
=20 \times 0.2 /(1-0.2)=20 \times 0.25=5 \mathrm{~ms}(0.005 \mathrm{~s})
$$

$L_{q} \quad($ avg length of queue $)=\lambda \times T_{q}=10 / \mathrm{s} \times .005 \mathrm{~s}=0.05 \mathrm{~s}$
$\mathrm{T}_{\text {sys }}$ (avg time/customer in system) $=\mathrm{T}_{\mathrm{q}}+\mathrm{T}_{\text {ser }}=25 \mathrm{~ms}$

Queuing Theory Resources

- Resources page contains Queueing Theory Resources (under Readings):
- Scanned pages from Patterson and Hennessy book that gives further discussion and simple proof for general equation: https://cs 162.eecs.berkeley.edu/static/readings/patterson_queue. pdf
- A complete website full of resources:
http://web2.uwindsor.ca/math/hlynka/qonline.html
- Some previous midterms with queueing theory questions
- Assume that Queueing Theory is fair game for Midterm III

Summary

- Disk Performance:
- Queuing time + Controller + Seek + Rotational + Transfer
- Rotational latency: on average $1 / 2$ rotation
- Transfer time: spec of disk depends on rotation speed and bit storage density
- Devices have complex interaction and performance characteristics
- Response time (Latency) $=$ Queue + Overhead + Transfer
» Effective BW $=\mathrm{BW}$ * $\mathrm{T} /(\mathrm{S}+\mathrm{T})$
- HDD: Queuing time + controller + seek + rotation + transfer
- SDD: Queuing time + controller + transfer (erasure \& wear)
- Systems (e.g., file system) designed to optimize performance and reliability
- Relative to performance characteristics of underlying device
- Bursts \& High Utilization introduce queuing delays
- Queuing Latency:
- M/M/I and M/G/I queues: simplest to analyze
- As utilization approaches 100%, latency $\rightarrow \infty$

$$
\left.T_{\mathrm{q}}=\mathrm{T}_{\text {ser }} \times 1 / 2(1+\mathrm{C}) \times u /(1-\mathrm{u})\right)
$$

Optimize I/O Performance

- Do other useful work while waiting
» Multiple independent buses or controllers
- Optimize the bottleneck to increase service rate
» Use the queue to optimize the service
- Queues absorb bursts and smooth the flow
- Add admission control (finite queues)
- Limits delays, but may introduce unfairness and livelock

When is Disk Performance Highest?

- When there are big sequential reads, or
- When there is so much work to do that they can be piggy backed (reordering queues-one moment)
- OK to be inefficient when things are mostly idle
- Bursts are both a threat and an opportunity
- <your idea for optimization goes here>
- Waste space for speed?
- Other techniques:
- Reduce overhead through user level drivers
- Reduce the impact of I/O delays by doing other useful work in the meantime

