
CS162
Operating Systems and
Systems Programming

Lecture 19

File Systems (Con’t),
MMAP

October 5th, 2018
Prof. Ion Stoica

http://cs162.eecs.Berkeley.edu

Lec 19.211/5/18 CS162 © UCB Fall 2018

Our first filesystem: FAT (File Allocation Table)
• The most commonly used filesystem in the world!

• Assume (for now) we have a
way to translate a path to
a “file number”

– i.e., a directory structure

• Disk Storage is a collection of Blocks
– Just hold file data (offset o = < B, x >)

• Example: file_read 31, < 2, x >
– Index into FAT with file number
– Follow linked list to block
– Read the block from disk

into memory

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

file number

memory

Lec 19.311/5/18 CS162 © UCB Fall 2018

Directory Structure (cont’d)

• How many disk accesses to resolve “/my/book/count”?
– Read in file header for root (fixed spot on disk)
– Read in first data block for root

» Table of file name/index pairs. Search linearly – ok since directories
typically very small

– Read in file header for “my”
– Read in first data block for “my”; search for “book”
– Read in file header for “book”
– Read in first data block for “book”; search for “count”
– Read in file header for “count”

• Current working directory: Per-address-space pointer to a
directory (inode) used for resolving file names

– Allows user to specify relative filename instead of absolute path
(say CWD=“/my/book” can resolve “count”)

Lec 19.411/5/18 CS162 © UCB Fall 2018

Many Huge FAT Security Holes!

• FAT has no access rights

• FAT has no header in the file blocks

• Just gives an index into the FAT
– (file number = block number)

Lec 19.511/5/18 CS162 © UCB Fall 2018

Characteristics of Files

Lec 19.611/5/18 CS162 © UCB Fall 2018

Characteristics of Files

• Most files are small, growing numbers of files over time

Lec 19.711/5/18 CS162 © UCB Fall 2018

Characteristics of Files

• Most of the space is occupied by the rare big ones

Lec 19.811/5/18 CS162 © UCB Fall 2018

Unix File System (1/2)

• Original inode format appeared in BSD 4.1
– Berkeley Standard Distribution Unix
– Part of your heritage!
– Similar structure for Linux Ext2/3

• File Number is index into inode arrays
• Multi-level index structure

– Great for little and large files
– Asymmetric tree with fixed sized blocks

Lec 19.911/5/18 CS162 © UCB Fall 2018

Unix File System (2/2)

• Metadata associated with the file
– Rather than in the directory that points to it

• UNIX Fast File System (FFS) BSD 4.2 Locality Heuristics:
– Block group placement
– Reserve space

• Scalable directory structure

Lec 19.1011/5/18 CS162 © UCB Fall 2018

File Attributes

• inode metadata

Inode Array

File
Metadata

Direct
Pointers

Indirect Pointer
Dbl. Indirect Ptr.
Tripl. Indrect Ptr.

Inode
Data

Blocks
Indirect
Blocks

Double
Indirect
Blocks

Triple
Indirect
Blocks

... ...

...

......

...
...

......... ...
...

...

...

Lec 19.1111/5/18 CS162 © UCB Fall 2018

File Attributes

• inode metadata

Inode Array

File
Metadata

Direct
Pointers

Indirect Pointer
Dbl. Indirect Ptr.
Tripl. Indrect Ptr.

Inode
Data

Blocks
Indirect
Blocks

Double
Indirect
Blocks

Triple
Indirect
Blocks

... ...

...

......

...
...

......... ...
...

...

...User
Group
9 basic access control bits

- UGO x RWX
Setuid bit

- execute at owner permissions
rather than user

Setgid bit
- execute at group’s permissions

Lec 19.1211/5/18 CS162 © UCB Fall 2018

Data Storage

• Small files: 12 pointers direct to data blocks

Inode Array

File
Metadata

Direct
Pointers

Indirect Pointer
Dbl. Indirect Ptr.
Tripl. Indrect Ptr.

Inode
Data

Blocks
Indirect
Blocks

Double
Indirect
Blocks

Triple
Indirect
Blocks

... ...

...

......

...
...

......... ...
...

...

...

Direct pointers

4kB blocks Þ sufficient
for files up to 48KB

Lec 19.1311/5/18 CS162 © UCB Fall 2018

Data Storage

• Large files: 1,2,3 level indirect pointers

Inode Array

File
Metadata

Direct
Pointers

Indirect Pointer
Dbl. Indirect Ptr.
Tripl. Indrect Ptr.

Inode
Data

Blocks
Indirect
Blocks

Double
Indirect
Blocks

Triple
Indirect
Blocks

... ...

...

......

...
...

......... ...
...

...

...

Indirect pointers
- point to a disk block

containing only pointers
- 4 kB blocks => 1024 ptrs

=> 4 MB @ level 2
=> 4 GB @ level 3
=> 4 TB @ level 4

48 KB

+4 MB

+4 GB

+4 TB

Lec 19.1411/5/18 CS162 © UCB Fall 2018

UNIX BSD 4.2 (1984) (1/2)

• Same as BSD 4.1 (same file header and triply indirect blocks), except
incorporated ideas from Cray Operating System:

– Uses bitmap allocation in place of freelist
– Attempt to allocate files contiguously
– 10% reserved disk space
– Skip-sector positioning (mentioned later)

Lec 19.1511/5/18 CS162 © UCB Fall 2018

UNIX BSD 4.2 (1984) (2/2)

• Problem: When create a file, don’t know how big it will become (in
UNIX, most writes are by appending)

– How much contiguous space do you allocate for a file?
– In BSD 4.2, just find some range of free blocks

» Put each new file at the front of different range
» To expand a file, you first try successive blocks in bitmap,

then choose new range of blocks
– Also in BSD 4.2: store files from same directory near each other

• Fast File System (FFS)
– Allocation and placement policies for BSD 4.2

Lec 19.1611/5/18 CS162 © UCB Fall 2018

Attack of the Rotational Delay
• Problem 2: Missing blocks due to rotational delay

– Issue: Read one block, do processing, and read next block. In
meantime, disk has continued turning: missed next block! Need 1
revolution/block!

– Solution1: Skip sector positioning (“interleaving”)
» Place the blocks from one file on every other block of a track:

give time for processing to overlap rotation
» Can be done by OS or in modern drives by the disk controller

Skip Sector

Track Buffer
(Holds complete track)

Lec 19.1711/5/18 CS162 © UCB Fall 2018

Attack of the Rotational Delay
• Problem 2: Missing blocks due to rotational delay

– Issue: Read one block, do processing, and read next block. In
meantime, disk has continued turning: missed next block! Need 1
revolution/block!

– Solution 2: Read ahead: read next block right after first, even if
application hasn’t asked for it yet

» This can be done either by OS (read ahead)
» By disk itself (track buffers) - many disk controllers have

internal RAM that allows them to read a complete track
• Note: Modern disks + controllers do many things “under the covers”

– Track buffers, elevator algorithms, bad block filtering

Skip Sector

Track Buffer
(Holds complete track)

Lec 19.1811/5/18 CS162 © UCB Fall 2018

Where are inodes Stored?

• In early UNIX and DOS/Windows’ FAT file system,
headers stored in special array in outermost cylinders

• Header not stored anywhere near the data blocks
– To read a small file, seek to get header, seek back to data

• Fixed size, set when disk is formatted
– At formatting time, a fixed number of inodes are created
– Each is given a unique number, called an “inumber”

Lec 19.1911/5/18 CS162 © UCB Fall 2018

Where are inodes Stored?

• Later versions of UNIX moved the header information to be
closer to the data blocks

– Often, inode for file stored in same “cylinder group” as parent
directory of the file (makes an ls of that directory run fast)

• Pros:
– UNIX BSD 4.2 puts bits of file header array on many cylinders
– For small directories, can fit all data, file headers, etc. in same

cylinder Þ no seeks!
– File headers much smaller than whole block (a few hundred

bytes), so multiple headers fetched from disk at same time
– Reliability: whatever happens to the disk, you can find many of

the files (even if directories disconnected)
• Part of the Fast File System (FFS)

– General optimization to avoid seeks

Lec 19.2011/5/18 CS162 © UCB Fall 2018

4.2 BSD Locality: Block Groups

• File system volume is divided into a set of block groups
– Close set of tracks

• Data blocks, metadata, and free space
interleaved within block group

– Avoid huge seeks between
user data and system structure

• Put directory and its files in
common block group

Lec 19.2111/5/18 CS162 © UCB Fall 2018

4.2 BSD Locality: Block Groups

• First-Free allocation of new
file blocks

– To expand file, first try
successive blocks in bitmap, then
choose new range of blocks

– Few little holes at start, big
sequential runs at end of group

– Avoids fragmentation
– Sequential layout for big files

• Important: keep 10% or more free!
– Reserve space in the Block Group

Lec 19.2211/5/18 CS162 © UCB Fall 2018

UNIX 4.2 BSD FFS First Fit Block Allocation

• Fills in the small holes at the start of block group
• Avoids fragmentation, leaves contiguous free space at end

Lec 19.2311/5/18 CS162 © UCB Fall 2018

UNIX 4.2 BSD FFS

• Pros
– Efficient storage for both small and large files
– Locality for both small and large files
– Locality for metadata and data
– No defragmentation necessary!

• Cons
– Inefficient for tiny files (a 1 byte file requires both an inode

and a data block)
– Inefficient encoding when file is mostly contiguous on disk
– Need to reserve 10-20% of free space to prevent

fragmentation

Lec 19.2411/5/18 CS162 © UCB Fall 2018

BREAK

Lec 19.2511/5/18 CS162 © UCB Fall 2018

Linux Example: Ext2/3 Disk Layout
• Disk divided into block groups

– Provides locality
– Each group has two block-

sized bitmaps (free
blocks/inodes)

– Block sizes settable
at format time:
1K, 2K, 4K, 8K…

• Actual inode structure similar
to 4.2 BSD

– with 12 direct pointers
• Ext3: Ext2 with Journaling

– Several degrees of
protection with
comparable overhead

• Example: create a file1.dat
under /dir1/ in Ext3

Lec 19.2611/5/18 CS162 © UCB Fall 2018

A bit more on directories
• Stored in files, can be read, but typically don’t

– System calls to access directories
– open / creat traverse the structure
– mkdir /rmdir add/remove entries
– link / unlink (rm)

» Link existing file to a directory
• Not in FAT !

» Forms a DAG
• When can file be deleted?

– Maintain ref-count of links to the file
– Delete after the last reference is gone

• libc support
– DIR * opendir (const char *dirname)
– struct dirent * readdir (DIR *dirstream)
– int readdir_r (DIR *dirstream, struct dirent *entry,

struct dirent **result)

/usr

/usr/lib4.3

/usr/lib4.3/foo

/usr/lib

/usr/lib/foo

Lec 19.2711/5/18 CS162 © UCB Fall 2018

Links

• Hard link
– Sets another directory entry to contain the file number for

the file
– Creates another name (path) for the file
– Each is “first class”

• Soft link or Symbolic Link or Shortcut
– Directory entry contains the path and name of the file
– Map one name to another name

Lec 19.2811/5/18 CS162 © UCB Fall 2018

Large Directories: B-Trees (dirhash)

.
36210429

..
983211

file1
239341

file2
231121

...

...
file9841
243212

out1
841013

out2
841014

...

...
out16341

324114
Name

File Number

B+Tree LeafB+Tree Leaf
...Hash

Entry Pointer
0000a0d1 0000b971 ... 0000c194

B+Tree Leaf

Before
Child Pointer

0000c195 00018201 ...
B+Tree Node

Before
Child Pointer

00ad1102 b0bf8201 ... cff1a412
B+Tree Root

B+Tree Node B+Tree Node
...

Search for hash(”out2”) = 0x0000c194

“out2” is file 841014

in FreeBSD, NetBSD, OpenBSD

Lec 19.2911/5/18 CS162 © UCB Fall 2018

NTFS

• New Technology File System (NTFS)
– Default on Microsoft Windows systems

• Variable length extents
– Rather than fixed blocks

• Everything (almost) is a sequence of <attribute:value> pairs
– Meta-data and data

• Mix direct and indirect freely

• Directories organized in B-tree structure by default

Lec 19.3011/5/18 CS162 © UCB Fall 2018

NTFS

• Master File Table
– Database with Flexible 1KB entries for metadata/data
– Variable-sized attribute records (data or metadata)
– Extend with variable depth tree (non-resident)

• Extents – variable length
contiguous regions

– Block pointers cover
runs of blocks

– Similar approach in
Linux (ext4)

– File create can provide
hint as to size of file

• Journaling for reliability
– Discussed later http://ntfs.com/ntfs-mft.htm

Lec 19.3111/5/18 CS162 © UCB Fall 2018

NTFS Small File

Std. Info. File Name Data (resident) (free)

MFT Record (small file)

Master File Table

Create time, modify time, access time,
Owner id, security specifier, flags (RO, hidden, sys)

data attribute

Attribute list

Lec 19.3211/5/18 CS162 © UCB Fall 2018

NTFS Medium File

Std. Info. File Name Data (nonresident) (free)

MFT Record

Master File Table

D
at

a
Ex

te
n

t
D

at
a

Ex
te

n
t

Start

Length +

Start + Length

+
Start

Length

Start + Length

Lec 19.3311/5/18 CS162 © UCB Fall 2018

NTFS Multiple Indirect Blocks

Lec 19.3411/5/18 CS162 © UCB Fall 2018

Master File Table

Std. Info.

MFT Record
(huge/badly-fragmented file)

Attr. List (nonresident)

Data (nonresident)

...

...

Data (nonresident)

...

Data (nonresident)

...

Extent with part of attribute list

Extent with part of attribute list

Extent with part of attribute list

Data (nonresident)

...

Data (nonresident)

...

Data (nonresident)

...

Data (nonresident)

...

...
...

...

...

Lec 19.3511/5/18 CS162 © UCB Fall 2018

Memory Mapped Files

• Traditional I/O involves explicit transfers between buffers in
process address space to/from regions of a file

– This involves multiple copies into caches in memory, plus system
calls

• What if we could “map” the file directly into an empty region
of our address space

– Implicitly “page it in” when we read it
– Write it and “eventually” page it out

• Executable files are treated this way when we exec the
process!!

Lec 19.3611/5/18 CS162 © UCB Fall 2018

Recall: Who Does What, When?

virtual address

MMU PT
instruction

physical address

page#
frame#

offsetpage fault

Operating System

exception

Page Fault Handler

load page from disk

update PT entry

Process

scheduler

retry frame#

offset

Lec 19.3711/5/18 CS162 © UCB Fall 2018

Using Paging to mmap() Files

virtual address

MMU PTinstruction

physical address

page#
frame#

offset
page fault

Process

File

mmap() file to region of VAS

Create PT entries
for mapped region
as “backed” by file

Operating System

exception

Page Fault Handler

scheduler

retry

Read File
contents

from memory!

Lec 19.3811/5/18 CS162 © UCB Fall 2018

mmap() system call

• May map a specific region or let the system find one for you
– Tricky to know where the holes are

• Used both for manipulating files and for sharing between
processes

Lec 19.3911/5/18 CS162 © UCB Fall 2018

An mmap() Example
#include <sys/mman.h> /* also stdio.h, stdlib.h, string.h, fcntl.h, unistd.h */

int something = 162;

int main (int argc, char *argv[]) {
int myfd;
char *mfile;

printf("Data at: %16lx\n", (long unsigned int) &something);
printf("Heap at : %16lx\n", (long unsigned int) malloc(1));
printf("Stack at: %16lx\n", (long unsigned int) &mfile);

/* Open the file */
myfd = open(argv[1], O_RDWR | O_CREAT);
if (myfd < 0) { perror("open failed!");exit(1); }

/* map the file */
mfile = mmap(0, 10000, PROT_READ|PROT_WRITE, MAP_FILE|MAP_SHARED, myfd, 0);
if (mfile == MAP_FAILED) {perror("mmap failed"); exit(1);}

printf("mmap at : %16lx\n", (long unsigned int) mfile);

puts(mfile);
strcpy(mfile+20,"Let's write over it");
close(myfd);
return 0;

}

$./mmap test
Data at: 105d63058
Heap at : 7f8a33c04b70
Stack at: 7fff59e9db10
mmap at : 105d97000
This is line one
This is line two
This is line three
This is line four

$ cat test
This is line one
ThiLet's write over its line three
This is line four

Lec 19.4011/5/18 CS162 © UCB Fall 2018

File System Summary (1/2)
• File System:

– Transforms blocks into Files and Directories
– Optimize for size, access and usage patterns
– Maximize sequential access, allow efficient random access
– Projects the OS protection and security regime (UGO vs ACL)

• File defined by header, called “inode”
• Naming: translating from user-visible names to actual sys resources

– Directories used for naming for local file systems
– Linked or tree structure stored in files

• Multilevel Indexed Scheme
– inode contains file info, direct pointers to blocks, indirect blocks,

doubly indirect, etc..
– NTFS: variable extents not fixed blocks, tiny files data is in header

Lec 19.4111/5/18 CS162 © UCB Fall 2018

File System Summary (2/2)
• 4.2 BSD Multilevel index files

– Inode contains ptrs to actual blocks, indirect blocks, double indirect
blocks, etc.

– Optimizations for sequential access: start new files in open ranges
of free blocks, rotational optimization

• File layout driven by freespace management
– Integrate freespace, inode table, file blocks and dirs into block

group

• Deep interactions between mem management, file system, sharing
– mmap(): map file or anonymous segment to memory

