CS162
Operating Systems and
Systems Programming

Lecture 2

Introduction to Processes

August 27t 2018

Prof. lon Stoica

http://cs162.eecs.Berkeley.edu

Recall: What is an operating system!?

* Special layer of software that provides application software access to
hardware resources

— Convenient abstraction of complex hardware devices
— Protected access to shared resources
— Security and authentication

— Communication amongst logical entities

=1

Vv

8/27/18 Stoica CS162 ©UCB Fall 2018 Lec 2.2

Very Brief History of OS

e Several Distinct Phases:

8/27/18 Stoica CS162 ©UCB Fall 2018 Lec 2.3

Very Brief History of OS

e Several Distinct Phases:

— Hardware Expensive, Humans Cheap
» Eniac, ... Multics

"I think there Is a world market for
maybe five computers.” — Thomas

Watson, chairman of IBM, 943

8/27/18 Stoica CS162 ©UCB Fall 2018 Lec 2.4

Very Brief History of OS

e Several Distinct Phases:

— Hardware Expensive, Humans Cheap
» Eniac, ... Multics

Thomas Watson was often called “the
worlds greatest salesman” by the time

of his death in 1956

8/27/18 Stoica CS162 ©UCB Fall 2018 Lec 2.5

Very Brief History of OS

* Several Distinct Phases:
— Hardware Expensive, Humans Cheap
» Eniac, ... Multics
— Hardware Cheaper, Humans Expensive
» PCs, Workstations, Rise of GUIs

RANK XEROX
Now you can create
documents with words
and pictures

8/27/18 Stoica CS162 ©UCB Fall 2018

Lec 2.6

Very Brief History of OS

* Several Distinct Phases:
— Hardware Expensive, Humans Cheap
» Eniac, ... Multics
— Hardware Cheaper, Humans Expensive
» PCs, Workstations, Rise of GUIs
— Hardware Really Cheap, Humans Really Expensive
» Ubiquitous devices, widespread networking

RANK XEROX
Now you can create
documents with words
and pictures

8/27/18 Stoica CS162 ©UCB Fall 2018 Lec 2.7

Very Brief History of OS

* Several Distinct Phases:
— Hardware Expensive, Humans Cheap
» Eniac, ... Multics
— Hardware Cheaper, Humans Expensive
» PCs, Workstations, Rise of GUIs
— Hardware Really Cheap, Humans Really Expensive
» Ubiqurtous devices, Widespread networking

* Rapid change in hardware leads to changing OS

— Batch = Multiprogramming = Timesharing = Graphical Ul =
Ubiquitous Devices

— Gradual migration of features into smaller machines

* [oday
— Small OS: 100K lines / Large: |0M lines (5M browser!)
— 100-1000 people-years

8/27/18 Stoica CS162 ©UCB Fall 2018 Lec 2.8

OS Archaeology

* Because of the cost of developing an OS from scratch, most
modern OSes have a long lineage:

e Multics =2 AT&T Unix =2 BSD Unix =2 Ulrix, SunOS, NetBSD,...

e Mach (micro-kernel) + BSD = NextStep = XNU -
Apple OS X, iPhone 105

e MINIX = Linux = Android OS, Chrome OS, RedHat, Ubuntu,
Fedora, Debian, Suse,...

« CP/M = QDOS - MS-DOS = Windows 3.1 = NT = 95 - 98
2 2000 > XP 2> Vista=> /72>8=2> 10> ...

8/27/18 Stoica CS162 ©UCB Fall 2018 Lec 2.9

Migration of OS Concepts and Features

1950

1960 1970 1980 1990

_ MULTICS
mainframes . _ \ o
no compilers time distributed
software shared multiuser systems
batch multiprocessor
res@ent networked - m.
monitors
- UNIX
minicomputers -
no compilers
software , , ;
time multiuser multiprocessor
resident ~ Shared N

fault tolerant

; networked
» monitors \
clustered
. UNIX
P desktop computers
d

no compilers
software interactive multiprocessor

multiuser B worked

UNIX

compilers no
software

handheld computers

interactive
networked

8/27/18 Stoica CS162 ©UCB Fall 2018 Lec 2.10

Today: Four Fundamental OS Concepts
Thread

— Single unique execution context: fully describes program state

— Program Counter, Registers, Execution Flags, Stack
Address space (with translation)

— Programs execute in an address space that is distinct from the memory
space of the physical machine

Process

— An Instance of an executing program is a process consisting of an
address space and one or more threads of control

Dual mode operation / Protection
— Only the "system™ has the ablility to access certain resources

— The OS and the hardware are protected from user programs and user
programs are isolated from one another by controlling the translation
from program virtual addresses to machine physical addresses

8/27/18 Stoica CS162 ©UCB Fall 2018 Lec 2.11

OS Bottom Line: Run Programs

OxFFF...
Executable
Program Source ©5
. I il
o
ﬁ § E‘ data % ‘qf,)’ stack
S O 2 9 3
Q v))
o X 3
> || instructions - i Q
heap 3
foo.c a.out data
* Load instruction and data segments of instructions
executable file into memory 0x000
* Create stack and heap PC: C—
* “Transfer control to program” registers
* Provide services to program Processor

While protecting OS and program

8/27/18 Stoica CS162 ©UCB Fall 2018 Lec 2.12

Recall (61B): Instruction Fetch/Decode/Execute

The instruction cycle

Memory
Processor [next]&
\!I
PC:
| :)
Instruction fetch Instruction
Decode [decode]
v
Registers
Execute
\f;/
data

8/27/18 Stoica CS162 ©UCB Fall 2018 Lec 2.13

Recall (61C): What happens during program execution?

Addr 232-]

Inst236
e Execution sequence: Inst5
Inst4

— Fetch Instruction at PC

Inst3
— Decode Inst?2
— Execute (possibly using registers) Inst |
— Write results to registers/mem InstO
— PC = Next Instruction(PC)
Addr 0
— Repeat

8/27/18 Stoica CS162 ©UCB Fall 2018

PC
PC
PC
PC

Lec 2.14

First OS Concept: Thread of Control

Certain registers hold the context of thread
— Stack pointer holds the address of the top of stack
» Other conventions: Frame pointer, Heap pointer, Data

— May be defined by the instruction set architecture or by compiler
conventions

Thread: Single unique execution context

— Program Counter, Registers, Execution Flags, Stack

A thread Is executing on a processor when it Is resident in the
processor registers.

PC register holds the address of executing instruction in the
thread

Registers hold the root state of the thread.

— The rest is “in memory”

8/27/18 Stoica CS162 ©UCB Fall 2018 Lec 2.15

Second OS Concept: Program’s Address Space

* Address space = the set of accessible ceack OxFFF...
addresses + state associated with them:
— For a 32-bit processor there are 232 = 4
billion addresses heap
Static Data
* What happens when you read or write to
an address!
code
— Perhaps nothing 0x000...

— Perhaps acts like regular memory
— Perhaps ignores writes

— Perhaps causes I/O operation
» (Memory-mapped I/O)

— Perhaps causes exception (fault)

8/27/18 Stoica CS162 ©UCB Fall 2018 Lec 2.16

Address Space: In a Picture

PC: o l stack
SP:
N
heap
Processor _
: Static Data
registers
instruction
Code Segment

* What's in the code segment? Static data segment!

* What's in the Stack Segment!
— How s it allocated? How big is it/

* What's in the Heap Segment!
— How is It allocated? How big!

8/27/18 Stoica CS162 ©UCB Fall 2018

OxFFF...

0x000...

Lec 2.17

Multiprogramming - Multiple Threads of Control

Proc Proc
2 [X X) n
OS

| stack |

heap

Static Data
code

| sack]

heap

Static Data
code

8/27/18 Stoica CS162 ©UCB Fall 2018 Lec 2.18

How can we give the illusion of multiple processors!?

vCPUI| vCPU2 [vCPU3| vCPUI JvCPU2
Shared Memory Time ——

Assume a single processor. How do we provide the illusion of
multiple processors?

— Multiplex in time!

Each virtual "CPU" needs a structure to hold:
— Program Counter (PC), Stack Pointer (SP)
— Registers (Integer, Floating point, others...?)
How switch from one virtual CPU to the next!
— Save PC, SP, and registers in current state block
— Load PC, SP, and registers from new state block
What triggers switch?

— Timer, voluntary yield, I/O, other things
8/27/18 Stoica CS162 ©UCB Fall 2018 Lec 2.19

The Basic Problem of Concurrency

The basic problem of concurrency involves resources:
— Hardware: single CPU, single DRAM, single I/O devices

— Multiprogramming API: processes think they have exclusive access to
shared resources

OS has to coordinate all activity
— Multiple processes, I/O interrupts, ...

— How can it keep all these things straight?

Basic Idea: Use Virtual Machine abstraction
— Simple machine abstraction for processes
— Multiplex these abstract machines
Dijkstra did this for the “THE system”
— Few thousand lines vs | million lines in OS 360 (K bugs)

8/27/18 Stoica CS162 ©UCB Fall 2018 Lec 2.20

Properties of this simple multiprogramming technique

* All virtual CPUs share same non-CPU resources
— /O devices the same
— Memory the same

* Consequence of sharing:

— Each thread can access the data of every other thread (good for
sharing, bad for protection)

— Threads can share instructions
(good for sharing, bad for protection)

— Can threads overwrite OS functions!
* This (unprotected) model is common in:
— Embedded applications
— Windows 3.1/Early Macintosh (switch only with yield)
— Windows 95—ME (switch with both yield and timer)

8/27/18 Stoica CS162 ©UCB Fall 2018 Lec 2.21

Protection

* Operating System must protect rtself from user programs

— Reliability: compromising the operating system generally causes it to
crash

— Security: limit the scope of what processes can do
— Privacy: imit each process to the data it is permitted to access

— Faimess: each should be limited to its appropriate share of system
resources (CPU time, memory, /O, etc)

* |t must protect User programs from one another

* Primary Mechanism: limit the translation from program address space
to physical memory space

— Can only touch what is mapped into process address space
* Additional Mechanisms:
— Privileged instructions, in/out instructions, special registers

— syscall processing, subsystem implementation

» (e.g, file access rights, etc)
8/27/18 Stoica CS162 ©UCB Fall 2018 Lec 2.22

Third OS Concept: Process

* Process: execution environment with Restricted Rights
— Address Space with One or More Threads

— Owns memory (address space)
— Owns file descriptors, file system context, ...
— Encapsulate one or more threads sharing process resources

Why processes!’
— Protected from each other!
— OS Protected from them
— Processes provides memory protection
— Threads more efficient than processes (later)

Fundamental tradeoff between protection and efficiency
« Communication easier within a process
* Communication harder between processes

Application instance consists of one or more processes

8/27/18 Stoica CS162 ©UCB Fall 2018 Lec 2.23

Single and Multit

nreaded Processes

code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack

thread —» ;

%

%

;4—— thread

single-threaded process

multithreaded process

* Threads encapsulate concurrency: “Active” component

* Address spaces encapsulate protection: "Passive’” part

— Keeps buggy program from trashing the system

* Why have multiple threads per address space?

8/27/18

Stoica CS162 ©UCB Fall 2018

Lec 2.24

Fourth OS Concept: Dual Mode Operation

* Hardware provides at least two modes:
— "Kernel” mode (or “supervisor’ or “protected”)

— "User” mode: Normal programs executed

* What is needed in the hardware to support “dual mode™ operation?
— A bit of state (user/system mode bit)
— Certain operations / actions only permitted in system/kernel mode
» In user mode they fail or trap

— User = Kernel transition sets system mode AND saves the user PC

» Operating system code carefully puts aside user state then performs the
necessary operations

— Kernel = User transition clears system mode AND restores appropriate
user PC

» return-from-interrupt

8/27/18 Stoica CS162 ©UCB Fall 2018 Lec 2.25

User/Kernel (Privileged) Mode

| |
Limited HWV access Full HW access

8/27/18 Stoica CS162 ©UCB Fall 2018 Lec 2.26

Administrivia (Cont’d)

* lon’s office hours: Mondays |-2pm, Wednesday |2-1pm
in 465 Soda

— No office hours Wednesday 8/29

* Avoid private Piazza posts — others have same guestion

 Three Free Online Textbooks:

— Click on "“Resources” link for a list of “Online Textbooks”
— Can read O'Rellly books for free as long as on campus or VPN

» One book on Git, two books on C

* Webcast: https://CalCentral.Berkeley.edu/ (CalNet sign in)

— Webcast is *NOT* a replacement for coming to class!

8/27/18 Stoica CS162 ©UCB Fall 2018 Lec 2.27

Administrivia: Getting started
 Start homework O immediately = Due next Tuesday (9/4)!

— csl62-xx account, Github account, registration survey

— Vagrant and VirtualBox — VM environment for the course

» Consistent, managed environment on your machine
— Get familiar with all the cs162 tools, submit to autograder via git

— Homework slip days: You have 3 slip days
* Should be going to section already!

* Group sign up form will be out after drop deadline
— Work on finding groups ASAP: 4 people in a group!

— Try to attend erther same section or 2 sections by same TA

8/27/18 Stoica CS162 ©UCB Fall 2018 Lec 2.28

If You Want to do Research

 Please check here for a list of RISELab projects:
https://tinyurl.com/yabawxqgn

» Contact graduate students leading the project (see “Contact
person(s)” column)

8/27/18 Stoica CS162 ©UCB Fall 2018 Lec 2.29

5 min break

Simple Protection: Base and Bound (B&B)

— 0000... 0000...
code
> Static Data
Static Data
heap
heap
stack
0100...
Base
0010... 1000... — 1000...
Static Data
address heap
Bound
1100. .. 1 100...
FFFF...
8/27/18 Stoica CS162 ©UCB Fall 2018 Lec 2.31

Simple Protection: Base and Bound (B&B)

e 0000... 0000...
code
> Static Data
Static Data
heap
¥ heap
AN
stack
0100...
Base
0010... 1000... o= — 1000...
Static Data
Program 1010...
address .
Addresses translated Bound
when program is loaded 1100 1100...
* Requires relocating loader
 Still protects OS and isolates program —

* No addition on address path
8/27/18 Stoica CS162 ©UCB Fall 2018 Lec 2.32

Another idea: Address Space Translation

* Program operates in an address space that is distinct from the
physical memory space of the machine

8/27/18

&
Q
S5
ke
o
>
O
2)
S
o)

5
7
S
ke
\fb'
S
:-AS 4)
translator
__ J

Stoica CS162 ©UCB Fall 2018

Memory

0x000...

OxFFF...

Lec 2.33

A simple adc

ress translation with Base and Bound

code 0000... 0000...
code
> Static Data
heap Addresses translated Sl 1D
T on-the-fly heap
N
stack
Base Address
oo 1000... Ro\[code 1000...
Prc;g.ram 0010... > e Static Data
address U s
Bound
0100 1 100...
* Can the program touch O%!
* Can it touch other programs! FEFE.

8/27/18

Stoica CS162 ©UCB Fall 2018 Lec 2.34

Tying it together: Simple B&B: OS loads process

Proc
2 [X X]
L

sysmode
Base
Bound
uPC

PC

regs

8/27/18

7 ¥ 0000...

/| FFFF...

Stoica CS162 ©UCB Fall 2018

0000...

/ Static Data

Static Data

B

1000...

1 100...
3000...

3080...

FFFF...

Lec 2.35

Simple B&B: OS gets ready to execute process

Proc
2 [X X]
L

sysmode
Base
Bound
uPC

e Privileged Inst; °<
set special ress
registers

« RTU

8/27/18

1000 ...

/ 0000,

1100...

0001...

OOFF...

Stoica CS162 ©UCB Fall 2018

Static Data

heap

code

Static Data

heap

0000...

1000...

1 100...
3000...

3080...

FFFF...

Lec 2.36

Simple B&B: User Code Running

Proc
2 [X X]
OS

sysmode
Base

Bound

e How does “PC

kernel switch PC
between regs
processes!

* First question:
How to retumn
to system!?

8/27/18

0

1000 ... 0000...
1100... FFFF.{.
XXXX. . .
0001...]
OOFF...]

Stoica CS162 ©UCB Fall 2018

code

Static Data

heap

code

Static Data

heap

| 1 100...

3000...

3080...

FFFF...

Lec 2.37

3 types of Mode Transfer

Syscall
— Process requests a system service, e.g., exit
— Like a function call, but “outside” the process
— Does not have the address of the system function to call
— Like a Remote Procedure Call (RPC) — for later
— Marshall the syscall id and args in registers and exec syscall

Interrupt
— External asynchronous event triggers context switch
— e. g, Timer, /O device

— Independent of user process

Trap or Exception
— Internal synchronous event in process triggers context switch
— e.g,, Protection violation (segmentation fault), Divide by zero, ...

All 3 are an UNPROGRAMMED CONTROL TRANSFER
— Where does it go!

8/27/18 Stoica CS162 ©UCB Fall 2018 Lec 2.38

How do we get the system target address of the
“unprogrammed control transfer?”

8/27/18 Stoica CS162 ©UCB Fall 2018 Lec 2.39

Interrupt Vector

Address and properties of

interrupt number (i) each interrupt handler

Al

\ intrpHandler i () {

}

* Where else do you see this dispatch pattern!?

8/27/18 Stoica CS162 ©UCB Fall 2018 Lec 2.40

Simple B&B: User => Kernel

Proc
2 [X X]
OS

sysmode
Base
Bound
uPC

PC

regs

e How to return
to system?

8/27/18

code

Static Data

heap

0 1000...
code
1000 ... 0000... Static Data
1100... FFFF.|. heap
XXXX. ..
| 1100...
0000 1234 -
3000...
OOFF...]

3080...

FFFF...

Stoica CS162 ©UCB Fall 2018

Lec 2.41

Simple

B&B: Interrupt

sysmode
Base
Bound
uPC

PC

regs

* How to save
registers and

set up system
stack?
8/27/18

1000 ...

1100 ...

0000 1234

IntrpVector(i]

OOFF...

Stoica CS162 ©UCB Fall 2018

code

Static Data

heap

code

Static Data

heap

1000...

1 100...
3000...

3080...

FFFF...

Lec 2.42

Simple B&B: Switch User Process

Proc
2 [X X]
L

= N Sysmode
1000 ...
Base
1100 ...
Bound
0000 1234
uPC
regs
2 PC
OOFF...

)

* How to save
registers and

set up system
stack?
8/27/18

0001 0124

Stoica CS162 ©UCB Fall 2018

code | RTU

Static %ata

Static Data

heap

1000...

1 100...
3000...

3080...
FFFF...

Lec 2.43

Simple B&B: “resume”

0000...
Proc code | RTU
2
Static Data
OS5 heap
stack
sysmode 0 1000...
/|ooo N code
— Basc [|SO00NND 0000... i Do
Bound - FFFF... heap
0000 1234
uPC | »xxxx xxxx
PC | 000 0248
OOFF... 3000 ..
= &=
e How to save
registers and 3080, ..
set up system
stack? FFFF...
8/27/18 Stoica CS162 ©UCB Fall 2018 Lec 2.44

Conclusion: Four fundamental OS concepts

Thread

— Single unique execution context

— Program Counter, Registers, Execution Flags, Stack
Address Space with Translation

— Programs execute in an address space that is distinct from the memory
space of the physical machine

Process

— An Instance of an executing program is a process consisting of an
address space and one or more threads of control

Dual Mode operation/Protection

— Only the "system™ has the ablility to access certain resources

— The OS and the hardware are protected from user programs and user
programs are isolated from one another by controlling the translation
from program virtual addresses to machine physical addresses

8/27/18 Stoica CS162 ©UCB Fall 2018 Lec 2.45

