
CS162
Operating Systems and
Systems Programming

Lecture 2

Introduction to Processes

August 27th, 2018

Prof. Ion Stoica
http://cs162.eecs.Berkeley.edu

Lec 2.28/27/18 Stoica CS162 ©UCB Fall 2018

Recall: What is an operating system?

• Special layer of software that provides application software access to
hardware resources

– Convenient abstraction of complex hardware devices
– Protected access to shared resources
– Security and authentication
– Communication amongst logical entities

Hardware

applnapplnappln

OS

Lec 2.38/27/18 Stoica CS162 ©UCB Fall 2018

Very Brief History of OS
• Several Distinct Phases:

Lec 2.48/27/18 Stoica CS162 ©UCB Fall 2018

Very Brief History of OS
• Several Distinct Phases:

– Hardware Expensive, Humans Cheap
» Eniac, … Multics

“I think there is a world market for
maybe five computers.” – Thomas
Watson, chairman of IBM, 1943

Lec 2.58/27/18 Stoica CS162 ©UCB Fall 2018

Very Brief History of OS
• Several Distinct Phases:

– Hardware Expensive, Humans Cheap
» Eniac, … Multics

Thomas Watson was often called “the
worlds greatest salesman” by the time
of his death in 1956

Lec 2.68/27/18 Stoica CS162 ©UCB Fall 2018

Very Brief History of OS
• Several Distinct Phases:

– Hardware Expensive, Humans Cheap
» Eniac, … Multics

– Hardware Cheaper, Humans Expensive
» PCs, Workstations, Rise of GUIs

Lec 2.78/27/18 Stoica CS162 ©UCB Fall 2018

Very Brief History of OS
• Several Distinct Phases:

– Hardware Expensive, Humans Cheap
» Eniac, … Multics

– Hardware Cheaper, Humans Expensive
» PCs, Workstations, Rise of GUIs

– Hardware Really Cheap, Humans Really Expensive
» Ubiquitous devices, widespread networking

Lec 2.88/27/18 Stoica CS162 ©UCB Fall 2018

Very Brief History of OS
• Several Distinct Phases:

– Hardware Expensive, Humans Cheap
» Eniac, … Multics

– Hardware Cheaper, Humans Expensive
» PCs, Workstations, Rise of GUIs

– Hardware Really Cheap, Humans Really Expensive
» Ubiquitous devices, Widespread networking

• Rapid change in hardware leads to changing OS
– Batch Þ Multiprogramming Þ Timesharing Þ Graphical UI Þ

Ubiquitous Devices
– Gradual migration of features into smaller machines

• Today
– Small OS: 100K lines / Large: 10M lines (5M browser!)
– 100-1000 people-years

Lec 2.98/27/18 Stoica CS162 ©UCB Fall 2018

OS Archaeology

• Because of the cost of developing an OS from scratch, most
modern OSes have a long lineage:

• Multics à AT&T Unix à BSD Unix à Ultrix, SunOS, NetBSD,…

• Mach (micro-kernel) + BSD à NextStep à XNU à
Apple OS X, iPhone iOS

• MINIX à Linux à Android OS, Chrome OS, RedHat, Ubuntu,
Fedora, Debian, Suse,…

• CP/M à QDOS à MS-DOS à Windows 3.1 à NT à 95 à 98
à 2000 à XP à Vista à 7 à 8 à 10 à …

Lec 2.108/27/18 Stoica CS162 ©UCB Fall 2018

Migration of OS Concepts and Features

Lec 2.118/27/18 Stoica CS162 ©UCB Fall 2018

Today: Four Fundamental OS Concepts
• Thread

– Single unique execution context: fully describes program state
– Program Counter, Registers, Execution Flags, Stack

• Address space (with translation)
– Programs execute in an address space that is distinct from the memory

space of the physical machine
• Process

– An instance of an executing program is a process consisting of an
address space and one or more threads of control

• Dual mode operation / Protection
– Only the “system” has the ability to access certain resources
– The OS and the hardware are protected from user programs and user

programs are isolated from one another by controlling the translation
from program virtual addresses to machine physical addresses

Lec 2.128/27/18 Stoica CS162 ©UCB Fall 2018

OS Bottom Line: Run Programs

int main()
{ … ;
}

ed
ito

r
Program Source

foo.c

Lo
ad

 &

Ex
ec

ut
e M

em
ory

PC:

Processor

registers

0x000…

0xFFF…

instructions

data

heap

stack

OS

co
m

pi
le

r

Executable

a.out

data

instructions

• Load instruction and data segments of
executable file into memory

• Create stack and heap
• “Transfer control to program”
• Provide services to program
• While protecting OS and program

Lec 2.138/27/18 Stoica CS162 ©UCB Fall 2018

Recall (61B): Instruction Fetch/Decode/Execute

The instruction cycle

PC:

Instruction fetch

Registers

ALU

Execute

Memory

instruction

Decode decode

next

data

Processor

Lec 2.148/27/18 Stoica CS162 ©UCB Fall 2018

Fetch
Exec

R0
…

R31
F0
…
F30
PC

…
Data1
Data0
Inst237
Inst236

…
Inst5
Inst4
Inst3
Inst2
Inst1
Inst0

Addr 0

Addr 232-1

Recall (61C): What happens during program execution?

• Execution sequence:
– Fetch Instruction at PC
– Decode
– Execute (possibly using registers)
– Write results to registers/mem
– PC = Next Instruction(PC)
– Repeat

PC
PC
PC
PC

Lec 2.158/27/18 Stoica CS162 ©UCB Fall 2018

First OS Concept: Thread of Control

• Certain registers hold the context of thread
– Stack pointer holds the address of the top of stack

» Other conventions: Frame pointer, Heap pointer, Data
– May be defined by the instruction set architecture or by compiler

conventions
• Thread: Single unique execution context

– Program Counter, Registers, Execution Flags, Stack
• A thread is executing on a processor when it is resident in the

processor registers.
• PC register holds the address of executing instruction in the

thread
• Registers hold the root state of the thread.

– The rest is “in memory”

Lec 2.168/27/18 Stoica CS162 ©UCB Fall 2018

Second OS Concept: Program’s Address Space

0x000…

0xFFF…

code

Static Data

heap

stack• Address space Þ the set of accessible
addresses + state associated with them:

– For a 32-bit processor there are 232 = 4
billion addresses

• What happens when you read or write to
an address?

– Perhaps nothing
– Perhaps acts like regular memory
– Perhaps ignores writes
– Perhaps causes I/O operation

» (Memory-mapped I/O)
– Perhaps causes exception (fault)

Lec 2.178/27/18 Stoica CS162 ©UCB Fall 2018

Address Space: In a Picture

Processor
registers

PC:

0x000…

0xFFF…

Code Segment

Static Data

heap

stack

instruction

SP:

• What’s in the code segment? Static data segment?
• What’s in the Stack Segment?

– How is it allocated? How big is it?
• What’s in the Heap Segment?

– How is it allocated? How big?

Lec 2.188/27/18 Stoica CS162 ©UCB Fall 2018

Multiprogramming - Multiple Threads of Control

OS

Proc
1

Proc
2

Proc
n…

code
Static Data

heap

stack

code
Static Data

heap

stack

code
Static Data

heap

stack

Lec 2.198/27/18 Stoica CS162 ©UCB Fall 2018

How can we give the illusion of multiple processors?

vCPU3vCPU2vCPU1

Shared Memory

• Assume a single processor. How do we provide the illusion of
multiple processors?

– Multiplex in time!
• Each virtual “CPU” needs a structure to hold:

– Program Counter (PC), Stack Pointer (SP)
– Registers (Integer, Floating point, others…?)

• How switch from one virtual CPU to the next?
– Save PC, SP, and registers in current state block
– Load PC, SP, and registers from new state block

• What triggers switch?
– Timer, voluntary yield, I/O, other things

vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time

Lec 2.208/27/18 Stoica CS162 ©UCB Fall 2018

The Basic Problem of Concurrency

• The basic problem of concurrency involves resources:
– Hardware: single CPU, single DRAM, single I/O devices
– Multiprogramming API: processes think they have exclusive access to

shared resources
• OS has to coordinate all activity

– Multiple processes, I/O interrupts, …
– How can it keep all these things straight?

• Basic Idea: Use Virtual Machine abstraction
– Simple machine abstraction for processes
– Multiplex these abstract machines

• Dijkstra did this for the “THE system”
– Few thousand lines vs 1 million lines in OS 360 (1K bugs)

Lec 2.218/27/18 Stoica CS162 ©UCB Fall 2018

Properties of this simple multiprogramming technique

• All virtual CPUs share same non-CPU resources
– I/O devices the same
– Memory the same

• Consequence of sharing:
– Each thread can access the data of every other thread (good for

sharing, bad for protection)
– Threads can share instructions

(good for sharing, bad for protection)
– Can threads overwrite OS functions?

• This (unprotected) model is common in:
– Embedded applications
– Windows 3.1/Early Macintosh (switch only with yield)
– Windows 95—ME (switch with both yield and timer)

Lec 2.228/27/18 Stoica CS162 ©UCB Fall 2018

Protection
• Operating System must protect itself from user programs

– Reliability: compromising the operating system generally causes it to
crash

– Security: limit the scope of what processes can do
– Privacy: limit each process to the data it is permitted to access
– Fairness: each should be limited to its appropriate share of system

resources (CPU time, memory, I/O, etc)
• It must protect User programs from one another
• Primary Mechanism: limit the translation from program address space

to physical memory space
– Can only touch what is mapped into process address space

• Additional Mechanisms:
– Privileged instructions, in/out instructions, special registers
– syscall processing, subsystem implementation

» (e.g., file access rights, etc)

Lec 2.238/27/18 Stoica CS162 ©UCB Fall 2018

Third OS Concept: Process
• Process: execution environment with Restricted Rights

– Address Space with One or More Threads
– Owns memory (address space)
– Owns file descriptors, file system context, …
– Encapsulate one or more threads sharing process resources

• Why processes?
– Protected from each other!
– OS Protected from them
– Processes provides memory protection
– Threads more efficient than processes (later)

• Fundamental tradeoff between protection and efficiency
• Communication easier within a process
• Communication harder between processes

• Application instance consists of one or more processes

Lec 2.248/27/18 Stoica CS162 ©UCB Fall 2018

Single and Multithreaded Processes

• Threads encapsulate concurrency: “Active” component
• Address spaces encapsulate protection: “Passive” part

– Keeps buggy program from trashing the system
• Why have multiple threads per address space?

Lec 2.258/27/18 Stoica CS162 ©UCB Fall 2018

Fourth OS Concept: Dual Mode Operation

• Hardware provides at least two modes:
– “Kernel” mode (or “supervisor” or “protected”)
– “User” mode: Normal programs executed

• What is needed in the hardware to support “dual mode” operation?
– A bit of state (user/system mode bit)
– Certain operations / actions only permitted in system/kernel mode

» In user mode they fail or trap
– User à Kernel transition sets system mode AND saves the user PC

» Operating system code carefully puts aside user state then performs the
necessary operations

– Kernel à User transition clears system mode AND restores appropriate
user PC

» return-from-interrupt

Lec 2.268/27/18 Stoica CS162 ©UCB Fall 2018

User/Kernel (Privileged) Mode

User Mode

Kernel Mode

Full HW accessLimited HW access

exec

syscall

exit
rtn

interrupt

rfi

exception

Lec 2.278/27/18 Stoica CS162 ©UCB Fall 2018

Administrivia (Cont’d)

• Ion’s office hours: Mondays 1-2pm, Wednesday 12-1pm
in 465 Soda
– No office hours Wednesday 8/29

• Avoid private Piazza posts – others have same question

• Three Free Online Textbooks:
– Click on “Resources” link for a list of “Online Textbooks”
– Can read O'Reilly books for free as long as on campus or VPN

» One book on Git, two books on C

• Webcast: https://CalCentral.Berkeley.edu/ (CalNet sign in)
– Webcast is *NOT* a replacement for coming to class!

Lec 2.288/27/18 Stoica CS162 ©UCB Fall 2018

Administrivia: Getting started
• Start homework 0 immediately Þ Due next Tuesday (9/4)!

– cs162-xx account, Github account, registration survey
– Vagrant and VirtualBox – VM environment for the course

» Consistent, managed environment on your machine
– Get familiar with all the cs162 tools, submit to autograder via git
– Homework slip days: You have 3 slip days

• Should be going to section already!

• Group sign up form will be out after drop deadline
– Work on finding groups ASAP: 4 people in a group!
– Try to attend either same section or 2 sections by same TA

Lec 2.298/27/18 Stoica CS162 ©UCB Fall 2018

If You Want to do Research

• Please check here for a list of RISELab projects:
https://tinyurl.com/ya6awxqn

• Contact graduate students leading the project (see “Contact
person(s)” column)

5 min break

Lec 2.318/27/18 Stoica CS162 ©UCB Fall 2018

Simple Protection: Base and Bound (B&B)

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

0000…

1100…

0100…

Bound

1100…

1000…

Base

>=

<

Program
address

0010…

1010…

Lec 2.328/27/18 Stoica CS162 ©UCB Fall 2018

Simple Protection: Base and Bound (B&B)

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

0000…

1100…

0100…

Bound

1100…

1000…

Base

>=

<

Program
address

0010…

1010…

• Requires relocating loader
• Still protects OS and isolates program
• No addition on address path

Addresses translated
when program is loaded

Lec 2.338/27/18 Stoica CS162 ©UCB Fall 2018

Another idea: Address Space Translation

• Program operates in an address space that is distinct from the
physical memory space of the machine

Processor Memory

0x000…

0xFFF…

translator

Lec 2.348/27/18 Stoica CS162 ©UCB Fall 2018

A simple address translation with Base and Bound

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

0000…

Program
address

Base Address

Bound <

1000…

1100…
0100…

• Can the program touch OS?
• Can it touch other programs?

0010…
0010…

Addresses translated
on-the-fly

Lec 2.358/27/18 Stoica CS162 ©UCB Fall 2018

Tying it together: Simple B&B: OS loads process

OS

Proc
1

Proc
2

Proc
n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base xxxx …

xxxx…Bound

xxxx…uPC

regs

sysmode

…

1

PC

0000…

FFFF…

Lec 2.368/27/18 Stoica CS162 ©UCB Fall 2018

Simple B&B: OS gets ready to execute process

• Privileged Inst:
set special
registers

• RTU

OS

Proc
1

Proc
2

Proc
n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100…Bound

0001…uPC

regs

sysmode

…

1

PC

0000…

FFFF…

00FF…

RTU

Lec 2.378/27/18 Stoica CS162 ©UCB Fall 2018

Simple B&B: User Code Running

OS

Proc
1

Proc
2

Proc
n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100…Bound

xxxx…uPC

regs

sysmode

…

0

PC

0000…

FFFF…

00FF…

• How does
kernel switch
between
processes?

• First question:
How to return
to system?

0001…

Lec 2.388/27/18 Stoica CS162 ©UCB Fall 2018

3 types of Mode Transfer
• Syscall

– Process requests a system service, e.g., exit
– Like a function call, but “outside” the process
– Does not have the address of the system function to call
– Like a Remote Procedure Call (RPC) – for later
– Marshall the syscall id and args in registers and exec syscall

• Interrupt
– External asynchronous event triggers context switch
– e. g., Timer, I/O device
– Independent of user process

• Trap or Exception
– Internal synchronous event in process triggers context switch
– e.g., Protection violation (segmentation fault), Divide by zero, …

• All 3 are an UNPROGRAMMED CONTROL TRANSFER
– Where does it go?

Lec 2.398/27/18 Stoica CS162 ©UCB Fall 2018

How do we get the system target address of the
“unprogrammed control transfer?”

Lec 2.408/27/18 Stoica CS162 ©UCB Fall 2018

Interrupt Vector

• Where else do you see this dispatch pattern?

interrupt number (i)

intrpHandler_i () {
….

}

Address and properties of
each interrupt handler

Lec 2.418/27/18 Stoica CS162 ©UCB Fall 2018

Simple B&B: User => Kernel

OS

Proc
1

Proc
2

Proc
n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100…Bound

xxxx…uPC

regs

sysmode

…

0

PC

0000…

FFFF…

00FF…
• How to return

to system?

0000 1234

Lec 2.428/27/18 Stoica CS162 ©UCB Fall 2018

Simple B&B: Interrupt

OS

Proc
1

Proc
2

Proc
n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100 …Bound

0000 1234uPC

regs

sysmode

…

1

PC

0000…

FFFF…

00FF…
• How to save

registers and
set up system
stack?

IntrpVector[i]

Lec 2.438/27/18 Stoica CS162 ©UCB Fall 2018

Simple B&B: Switch User Process

OS

Proc
1

Proc
2

Proc
n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 3000 …

0080 …Bound

0000 0248uPC

regs

sysmode

…

1

PC

0000…

FFFF…

00D0…
• How to save

registers and
set up system
stack?

0001 0124

1000 …

1100 …

0000 1234

regs

00FF…

RTU

Lec 2.448/27/18 Stoica CS162 ©UCB Fall 2018

Simple B&B: “resume”

OS

Proc
1

Proc
2

Proc
n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 3000 …

0080 …Bound

xxxx xxxxuPC

regs

sysmode

…

0

PC

0000…

FFFF…

00D0…
• How to save

registers and
set up system
stack?

000 0248

1000 …

1100 …

0000 1234

regs

00FF…

RTU

Lec 2.458/27/18 Stoica CS162 ©UCB Fall 2018

Conclusion: Four fundamental OS concepts
• Thread

– Single unique execution context
– Program Counter, Registers, Execution Flags, Stack

• Address Space with Translation
– Programs execute in an address space that is distinct from the memory

space of the physical machine
• Process

– An instance of an executing program is a process consisting of an
address space and one or more threads of control

• Dual Mode operation/Protection
– Only the “system” has the ability to access certain resources
– The OS and the hardware are protected from user programs and user

programs are isolated from one another by controlling the translation
from program virtual addresses to machine physical addresses

