
CS162
Operating Systems and
Systems Programming

Lecture 20

Reliability, Transactions
Distributed Systems

November 7th, 2018
Prof. Ion Stoica

http://cs162.eecs.Berkeley.edu

Lec 20.211/7/18 CS162 © UCB Fall 2018

Important “ilities”
• Availability: the probability that the system can accept and process

requests
– Often measured in “nines” of probability. So, a 99.9% probability is

considered “3-nines of availability”
– Key idea here is independence of failures

• Durability: the ability of a system to recover data despite faults
– This idea is fault tolerance applied to data
– Doesn’t necessarily imply availability: information on pyramids was very

durable, but could not be accessed until discovery of Rosetta Stone

• Reliability: the ability of a system or component to perform its
required functions under stated conditions for a specified period of
time (IEEE definition)

– Usually stronger than simply availability: means that the system is not only
“up”, but also working correctly

– Includes availability, security, fault tolerance/durability
– Must make sure data survives system crashes, disk crashes, etc

Lec 20.311/7/18 CS162 © UCB Fall 2018

How to Make File System Durable?
• Disk blocks contain Reed-Solomon error correcting codes

(ECC) to deal with small defects in disk drive
– Can allow recovery of data from small media defects

• Make sure writes survive in short term
– Either abandon delayed writes or
– Use special, battery-backed RAM (called non-volatile RAM or

NVRAM) for dirty blocks in buffer cache

• Make sure that data survives in long term
– Need to replicate! More than one copy of data!
– Important element: independence of failure

» Could put copies on one disk, but if disk head fails…
» Could put copies on different disks, but if server fails…
» Could put copies on different servers, but if building is struck

by lightning….
» Could put copies on servers in different continents…

Lec 20.411/7/18 CS162 © UCB Fall 2018

RAID: Redundant Arrays of Inexpensive Disks

• Invented by David Patterson, Garth A. Gibson, and
Randy Katz here at UCB in 1987

• Data stored on multiple disks (redundancy)

• Either in software or hardware
– In hardware case, done by disk controller; file system may

not even know that there is more than one disk in use

• Initially, five levels of RAID (more now)

Lec 20.511/7/18 CS162 © UCB Fall 2018

RAID 1: Disk Mirroring/Shadowing

• Each disk is fully duplicated onto its “shadow”
– For high I/O rate, high availability environments
– Most expensive solution: 100% capacity overhead

• Bandwidth sacrificed on write:
– Logical write = two physical writes
– Highest bandwidth when disk heads and rotation fully

synchronized (hard to do exactly)
• Reads may be optimized

– Can have two independent reads to same data
• Recovery:

– Disk failure Þ replace disk and copy data to new disk
– Hot Spare: idle disk already attached to system to be used for

immediate replacement

recovery
group

Lec 20.611/7/18 CS162 © UCB Fall 2018

• Data stripped across
multiple disks

– Successive blocks
stored on successive
(non-parity) disks

– Increased bandwidth
over single disk

• Parity block (in green)
constructed by XORing
data bocks in stripe

– P0=D0ÅD1ÅD2ÅD3
– Can destroy any one

disk and still
reconstruct data

– Suppose Disk 3 fails,
then can reconstruct:
D2=D0ÅD1ÅD3ÅP0

• Can spread information widely across internet for durability
– Overview now, more later in semester

RAID 5+: High I/O Rate Parity

Increasing
Logical
Disk
Addresses

Stripe
Unit

D0 D1 D2 D3 P0

D4 D5 D6 P1 D7

D8 D9 P2 D10 D11

D12 P3 D13 D14 D15

P4 D16 D17 D18 D19

D20 D21 D22 D23 P5

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

Lec 20.711/7/18 CS162 © UCB Fall 2018

Higher Durability/Reliability through Geographic Replication

• Highly durable – hard to destroy all copies
• Highly available for reads – read any copy
• Low availability for writes

– Can’t write if any one replica is not up
– Or – need relaxed consistency model

• Reliability? – availability, security, durability, fault-tolerance

Replica #1

Replica #2

Replica #n

Lec 20.811/7/18 CS162 © UCB Fall 2018

File System Reliability

• What can happen if disk loses power or software crashes?
– Some operations in progress may complete
– Some operations in progress may be lost
– Overwrite of a block may only partially complete

• Having RAID doesn’t necessarily protect against all such
failures

– No protection against writing bad state
– What if one disk of RAID group not written?

• File system needs durability (as a minimum!)
– Data previously stored can be retrieved (maybe after some recovery

step), regardless of failure

Lec 20.911/7/18 CS162 © UCB Fall 2018

Storage Reliability Problem

• Single logical file operation can involve updates to
multiple physical disk blocks

– inode, indirect block, data block, bitmap, …
– With sector remapping, single update to physical disk block

can require multiple (even lower level) updates to sectors

• At a physical level, operations complete one at a time
– Want concurrent operations for performance

• How do we guarantee consistency regardless of when
crash occurs?

Lec 20.1011/7/18 CS162 © UCB Fall 2018

Threats to Reliability

• Interrupted Operation
– Crash or power failure in the middle of a series of related

updates may leave stored data in an inconsistent state

– Example: transfer funds from one bank account to another
– What if transfer is interrupted after withdrawal and before

deposit?

• Loss of stored data
– Failure of non-volatile storage media may cause previously

stored data to disappear or be corrupted

Lec 20.1111/7/18 CS162 © UCB Fall 2018

Reliability Approach #1: Careful Ordering

• Sequence operations in a specific order
– Careful design to allow sequence to be interrupted safely

• Post-crash recovery
– Read data structures to see if there were any operations in

progress
– Clean up/finish as needed

• Approach taken by
– FAT and FFS (fsck) to protect filesystem structure/metadata
– Many app-level recovery schemes (e.g., Word, emacs autosaves)

Lec 20.1211/7/18 CS162 © UCB Fall 2018

FFS: Create a File

Normal operation:
• Allocate data block
• Write data block
• Allocate inode
• Write inode block
• Update bitmap of free

blocks and inodes
• Update directory with

file name ® inode
number

• Update modify time for
directory

Recovery:
• Scan inode table
• If any unlinked files (not in

any directory), delete or
put in lost & found dir

• Compare free block
bitmap against inode trees

• Scan directories for missing
update/access times

Time proportional to disk size

Lec 20.1311/7/18 CS162 © UCB Fall 2018

Reliability Approach #2: Copy on Write File Layout

• To update file system, write a new version of the file
system containing the update

– Never update in place
– Reuse existing unchanged disk blocks

• Seems expensive! But
– Updates can be batched
– Almost all disk writes can occur in parallel

• Approach taken in network file server appliances
– NetApp’s Write Anywhere File Layout (WAFL)
– ZFS (Sun/Oracle) and OpenZFS

Lec 20.1411/7/18 CS162 © UCB Fall 2018

COW with Smaller-Radix Blocks

• If file represented as a tree of blocks, just need to
update the leading fringe

Write

old version new version

Lec 20.1511/7/18 CS162 © UCB Fall 2018

ZFS and OpenZFS

• Variable sized blocks: 512 B – 128 KB

• Symmetric tree
– Know if it is large or small when we make the copy

• Store version number with pointers
– Can create new version by adding blocks and new pointers

• Buffers a collection of writes before creating a new version
with them

• Free space represented as tree of extents in each block group
– Delay updates to freespace (in log) and do them all when block

group is activated

Lec 20.1611/7/18 CS162 © UCB Fall 2018

More General Reliability Solutions

• Use Transactions for atomic updates
– Ensure that multiple related updates are performed atomically
– i.e., if a crash occurs in the middle, the state of the systems

reflects either all or none of the updates
– Most modern file systems use transactions internally to update

filesystem structures and metadata
– Many applications implement their own transactions

• Provide Redundancy for media failures
– Redundant representation on media (Error Correcting Codes)
– Replication across media (e.g., RAID disk array)

Lec 20.1711/7/18 CS162 © UCB Fall 2018

Transactions
• Closely related to critical sections for manipulating

shared data structures

• They extend concept of atomic update from memory to
stable storage

– Atomically update multiple persistent data structures

• Many ad-hoc approaches
– FFS carefully ordered the sequence of updates so that if a

crash occurred while manipulating directory or inodes the disk
scan on reboot would detect and recover the error (fsck)

– Applications use temporary files and rename

Lec 20.1811/7/18 CS162 © UCB Fall 2018

Key Concept: Transaction

• An atomic sequence of actions (reads/writes) on a
storage system (or database)

• That takes it from one consistent state to another

consistent state 1 consistent state 2
transaction

Lec 20.1911/7/18 CS162 © UCB Fall 2018

Typical Structure

• Begin a transaction – get transaction id

• Do a bunch of updates
– If any fail along the way, roll-back
– Or, if any conflicts with other transactions, roll-back

• Commit the transaction

Lec 20.2011/7/18 CS162 © UCB Fall 2018

“Classic” Example: Transaction

UPDATE accounts SET balance = balance - 100.00 WHERE
name = 'Alice';

UPDATE branches SET balance = balance - 100.00 WHERE
name = (SELECT branch_name FROM accounts WHERE name
= 'Alice');

UPDATE accounts SET balance = balance + 100.00 WHERE
name = 'Bob';

UPDATE branches SET balance = balance + 100.00 WHERE
name = (SELECT branch_name FROM accounts WHERE name
= 'Bob');

BEGIN; --BEGIN TRANSACTION

COMMIT; --COMMIT WORK

Transfer $100 from Alice’s account to Bob’s account

Lec 20.2111/7/18 CS162 © UCB Fall 2018

The ACID properties of Transactions

• Atomicity: all actions in the transaction happen, or none
happen

• Consistency: transactions maintain data integrity, e.g.,
– Balance cannot be negative
– Cannot reschedule meeting on February 30

• Isolation: execution of one transaction is isolated from
that of all others; no problems from concurrency

• Durability: if a transaction commits, its effects persist
despite crashes

Lec 20.2211/7/18 CS162 © UCB Fall 2018

Break

Lec 20.2311/7/18 CS162 © UCB Fall 2018

Transactional File Systems (1/2)

• Better reliability through use of log
– All changes are treated as transactions

– A transaction is committed once it is written to the log
» Data forced to disk for reliability (improve perf. w/ NVRAM)

– File system may not be updated immediately, data preserved in
the log

• Difference between “Log Structured” and “Journaling”
– In a Log Structured filesystem, data stays in log form
– In a Journaling filesystem, Log used for recovery

Lec 20.2411/7/18 CS162 © UCB Fall 2018

Transactional File Systems (2/2)

• Journaling File System
– Applies updates to system metadata using transactions

(using logs, etc.)
– Updates to non-directory files (i.e., user stuff) can be done in

place (without logs), full logging optional
– Ex: NTFS, Apple HFS+, Linux XFS, JFS, ext3, ext4

Lec 20.2511/7/18 CS162 © UCB Fall 2018

Logging File Systems (1/2)

• Full Logging File System
– All updates to disk are done in transactions

• Instead of modifying data structures on disk directly, write changes to a
journal/log

– Intention list: set of changes we intend to make
– Log/Journal is append-only

– Single commit record commits transaction
• Once changes are in log, it is safe to apply changes to data structures

on disk
– Recovery can read log to see what changes were intended
– Can take our time making the changes

» As long as new requests consult the log first

Lec 20.2611/7/18 CS162 © UCB Fall 2018

Logging File Systems (2/2)

• Once changes are copied, safe to remove log
• But, …

– If the last atomic action is not done … poof … all gone
• Basic assumption:

– Updates to sectors are atomic and ordered
– Not necessarily true unless very careful, but key assumption

• Performance
– Great for random writes: replace with appends to log
– Impact read performance, but can alleviate this by caching

Lec 20.2711/7/18 CS162 © UCB Fall 2018

Redo Logging

• Prepare
– Write all changes (in

transaction) to log
• Commit

– Single disk write to make
transaction durable

• Redo
– Copy changes to disk

• Garbage collection
– Reclaim space in log

• Recovery
– Read log
– Redo any operations for

committed transactions
– Garbage collect log

Lec 20.2811/7/18 CS162 © UCB Fall 2018

Example: Creating a File

• Find free data block(s)

• Find free inode entry

• Find dirent insertion point

• Write map (i.e., mark used)

• Write inode entry to point to
block(s)

• Write dirent to point to inode

Data blocks

Free space
map

…

Inode table

Directory
entries

Lec 20.2911/7/18 CS162 © UCB Fall 2018

Ex: Creating a file (as a transaction)
• Find free data block(s)

• Find free inode entry

• Find dirent insertion point

• [log] Write map (used)

• [log] Write inode entry to point to
block(s)

• [log] Write dirent to point to inode

Data blocks

Free space
map

…

Inode table

Directory
entries

Log in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t

co
m

m
it

Lec 20.3011/7/18 CS162 © UCB Fall 2018

ReDo Log

• After Commit

• All access to file system first
looks in log

• Eventually copy changes to disk

Data blocks

Free space
map

…

Inode table

Directory
entries

Log in non-volatile storage (Flash)

headtail

pending

done

st
ar

t

co
m

m
it

tail tail tail tail

Lec 20.3111/7/18 CS162 © UCB Fall 2018

Crash During Logging – Recover

• Upon recovery scan the log

• Detect transaction start with
no commit

• Discard log entries

• Disk remains unchanged

Data blocks

Free space
map

…

Inode table

Directory
entries

Log in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t

Lec 20.3211/7/18 CS162 © UCB Fall 2018

Recovery After Commit

• Scan log, find start

• Find matching commit

• Redo it as usual
– Or just let it happen later

Data blocks

Free space
map

…

Inode table

Directory
entries

Log in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t

co
m

m
it

Lec 20.3311/7/18 CS162 © UCB Fall 2018

Course Structure: Spiral

intro

Lec 20.3411/7/18 CS162 © UCB Fall 2018

Societal Scale Information Systems

Scalable, Reliable,
Secure Services

MEMS for
Sensor Nets

Internet
Connectivity

Databases
Information Collection
Remote Storage
Online Games
Commerce

…

• The world is a large distributed system
– Microprocessors in everything
– Vast infrastructure behind them Clusters

Massive Cluster

Gigabit Ethernet

Clusters

Massive Cluster

Gigabit Ethernet

Lec 20.3511/7/18 CS162 © UCB Fall 2018

Centralized vs Distributed Systems

• Centralized System: System in which major functions are performed
by a single physical computer

– Originally, everything on single computer
– Later: client/server model

Server

Client/Server Model
Peer-to-Peer Model

Lec 20.3611/7/18 CS162 © UCB Fall 2018

Centralized vs Distributed Systems

• Distributed System: physically separate computers working together
on some task

– Early model: multiple servers working together
» Probably in the same room or building
» Often called a “cluster”

– Later models: peer-to-peer/wide-spread collaboration

Server

Client/Server Model
Peer-to-Peer Model

Lec 20.3711/7/18 CS162 © UCB Fall 2018

Distributed Systems: Motivation/Issues/Promise

• Why do we want distributed systems?
– Cheaper and easier to build lots of simple computers
– Easier to add power incrementally
– Users can have complete control over some components
– Collaboration: much easier for users to collaborate through network

resources (such as network file systems)

• The promise of distributed systems:
– Higher availability: one machine goes down, use another
– Better durability: store data in multiple locations
– More security: each piece easier to make secure

Lec 20.3811/7/18 CS162 © UCB Fall 2018

Distributed Systems: Reality

• Reality has been disappointing
– Worse availability: depend on every machine being up

» Lamport: “a distributed system is one where I can’t do work
because some machine I’ve never heard of isn’t working!”

– Worse reliability: can lose data if any machine crashes
– Worse security: anyone in world can break into system

• Coordination is more difficult
– Must coordinate multiple copies of shared state information (using

only a network)
– What would be easy in a centralized system becomes a lot more

difficult

Lec 20.3911/7/18 CS162 © UCB Fall 2018

Distributed Systems: Goals/Requirements
• Transparency: the ability of the system to mask its

complexity behind a simple interface
• Possible transparencies:

– Location: Can’t tell where resources are located
– Migration: Resources may move without the user knowing
– Replication: Can’t tell how many copies of resource exist
– Concurrency: Can’t tell how many users there are
– Parallelism: System may speed up large jobs by splitting them into

smaller pieces
– Fault Tolerance: System may hide various things that go wrong

• Transparency and collaboration require some way for
different processors to communicate with one another

Lec 20.4011/7/18 CS162 © UCB Fall 2018

Summary

• RAID: Redundant Arrays of Inexpensive Disks
– RAID1: mirroring, RAID5: Parity block

• Use of Log to improve Reliability
– Journaling file systems such as ext3, NTFS

• Transactions: ACID semantics
– Atomicity
– Consistency
– Isolation
– Durability

