CS162
Operating Systems and
Systems Programming

Lecture 20

Reliability, Transactions
Distributed Systems

November 7, 2018
Prof. lon Stoica
http://cs | 62.eecs.Berkeley.edu

Important “ilities”

* Avallability: the probability that the system can accept and process
requests

— Often measured in “nines” of probability. So, a 99.9% probability is
considered "‘3-nines of availability”

— Key idea here Is independence of failures

* Durabllity: the ability of a system to recover data despite faults
— This idea is fault tolerance applied to data

— Doesn't necessarily imply availability: information on pyramids was very
durable, but could not be accessed until discovery of Rosetta Stone

* Reliability: the ability of a system or component to perform its

required functions under stated conditions for a specified period of
time (IEEE definition)

— Usually stronger than simply avallability: means that the system is not only
“up”, but also working correctly

— Includes avallability, security, fault tolerance/durability

— Must make sure data survives system crashes, disk crashes, etc
11/7/18 CS162 © UCB Fall 2018 Lec 20.2

How to Make File System Durable?

* Disk blocks contain Reed-Solomon error correcting codes
(ECC) to deal with small defects in disk drive

— Can allow recovery of data from small media defects

e Make sure writes survive In short term

— Erther abandon delayed writes or

— Use special, battery-backed RAM (called non-volatile RAM or
NVRAM) for dirty blocks in buffer cache

* Make sure that data survives in long term

— Need to replicate!l More than one copy of datal

— Important element: independence of failure
» Could put copies on one disk, but If disk head falls...
» Could put copies on different disks, but If server fails...
» Could put copies on different servers, but if building is struck

by lightning....
» Could put copies on servers in different continents. ..
11/7/18 CS162 © UCB Fall 2018 Lec 20.3

RAID: Redundant Arrays of Inexpensive Disks

* Invented by David Patterson, Garth A. Gibson, and
Randy Katz here at UCB in 198/

* Data stored on multiple disks (redundancy)

e Either in software or hardware

— In hardware case, done by disk controller; file system may
not even know that there is more than one disk In use

* Inttially, five levels of RAID (more now)

11/7/18 CS162 © UCB Fall 2018 Lec 20.4

RAID I: Disk Mirroring/Shadowing

OO

* Each disk is fully dup

<«—_lecovery

group
iIcated onto 1ts “‘shadow”

— For high /O rate, high availability environments
— Most expensive solution: |00% capacity overhead

e Bandwidth sacrificed

on write:

— Logical write = two physical writes
— Highest bandwidth when disk heads and rotation fully
synchronized (hard to do exactly)

* Reads may be optimized
— Can have two independent reads to same data

* Recovery:

— Disk failure = replace disk and copy data to new disk

— Hot Spare: idle disk already attached to system to be used for
immediate replacement

11/7/18

CS162 © UCB Fall 2018 Lec 20.5

RAID 5+: High I/O Rate Parity -
tripe

* Data stripped across .
multiple disks =1 Unit

— Successive blocks DO Dl D2 D3 PO

stored on successive Increasing
(non-parity) disks D4 D5 6 Pl D7 | |Logical

— Increased bandwidth 2;5 dk
over single disk ps| | Do pio|l | b1y resses
* Parity block (in green)
constructed by XORing D12l | P3 3l (D14 |Dis
data bocks in stripe
— PO=D0®D | ®D2®&D3 P4 DI6 | DIS

— Can destroy any one
disk and still
reconstruct data

— Suppose Disk 3 falls,
then can reconstruct:
D2=D0®D | ®D3®P0O

* Can spread information widely across internet for durability
— Overview now, more later in semester

DI9

D20 | D2l D2 D23 P5

Disk | Disk2 Disk3 Disk 4 Disk 5

11/7/18 CS162 © UCB Fall 2018 Lec 20.6

Higher Durability/Reliability through Geographic Replication

* Highly durable — hard to destroy all copies

* Highly available for reads — read any copy

* Low avallabllity for writes
— Can't write If any one replica is not up

— Or — need relaxed consistency model

* Reliability! — availability, security, durability, fault-tolerance

Replica #1

i Replica #2

Replica #n

11/7/18 CS162 © UCB Fall 2018 Lec 20.7

File System Reliability

* What can happen If disk loses power or software crashes!
— Some operations in progress may complete
— Some operations in progress may be lost

— Overwrite of a block may only partially complete

* Having RAID doesn't necessarily protect against all such
fallures

— No protection against writing bad state
— What if one disk of RAID group not written?

* File system needs durablility (as a minimum!)

— Data previously stored can be retrieved (maybe after some recovery
step), regardless of failure

11/7/18 CS162 © UCB Fall 2018 Lec 20.8

Storage Reliability Problem

* Single logical file operation can involve updates to
multiple physical disk blocks

— Inode, indirect block, data block, britmap, ...

— With sector remapping, single update to physical disk block
can require multiple (even lower level) updates to sectors

* At a physical level, operations complete one at a time

— Want concurrent operations for performance

* How do we guarantee consistency regardless of when
crash occurs!

11/7/18 CS162 © UCB Fall 2018 Lec 20.9

Threats to Reliability

* Interrupted Operation

— Crash or power failure in the middle of a series of related
updates may leave stored data in an inconsistent state

— Example: transfer funds from one bank account to another

— What If transfer s interrupted after withdrawal and before
deposit!

e | oss of stored data

— Failure of non-volatile storage media may cause previously
stored data to disappear or be corrupted

11/7/18 CS162 © UCB Fall 2018 Lec 20.10

Reliability Approach #1: Careful Ordering

* Sequence operations In a specific order

— Careful design to allow sequence to be interrupted safely

* Post-crash recovery

— Read data structures to see if there were any operations in
progress

— Clean up/finish as needed

* Approach taken by
— FAT and FFS (fsck) to protect filesystem structure/metadata

— Many app-level recovery schemes (e.g., VWord, emacs autosaves)

11/7/18 CS162 © UCB Fall 2018 Lec 20.11

FFS: Create a File

Normal operation: Recovery:

* Allocate data block * Scan inode table

* Write data block * [f any unlinked files (not In
e Allocate inode any directory), delete or

L put In lost & found dir
 White inode block

* Update bitmap of free
blocks and inodes

« Compare free block
bitmap against inode trees

* Scan directories for missing

* Update directory with update/access times

file name — Inode
number

- Update modify time for Time proportional to disk size

directory

11/7/18 CS162 © UCB Fall 2018 Lec 20.12

Reliability Approach #2: Copy on Write File Layout

* o update file system, write a new version of the file
system containing the update

— Never update In place

— Reuse existing unchanged disk blocks

* Seems expensive!l But
— Updates can be batched

— Almost all disk writes can occur in parallel

* Approach taken in network file server appliances

— NetApp's Write Anywhere File Layout (WAFL)
— /ZFS (5un/Oracle) and OpenZFS

11/7/18 CS162 © UCB Fall 2018 Lec 20.13

COW with Smaller-Radix Blocks

old version new version

- I:I

* |f file represented as a tree of blocks, just need to
update the leading fringe

11/7/18 CS162 © UCB Fall 2018 Lec 20.14

ZFS and OpenZFS
* Variable sized blocks: 512 B — 128 KB

* Symmetric tree

— Know If 1t Is large or small when we make the copy

* Store version number with pointers

— Can create new version by adding blocks and new pointers

* Buffers a collection of writes before creating a new version
with them

* Free space represented as tree of extents in each block group

— Delay updates to freespace (in log) and do them all when block
group Is activated

11/7/18 CS162 © UCB Fall 2018 Lec 20.15

More General Reliability Solutions

» Use Transactions for atomic updates

— Ensure that multiple related updates are performed atomically

— l.e,, If a crash occurs in the middle, the state of the systems
reflects erther all or none of the updates

— Most modern file systems use transactions internally to update
filesystem structures and metadata

— Many applications implement their own transactions

* Provide Redundancy for media failures
— Redundant representation on media (Error Correcting Codes)

— Replication across media (e.g., RAID disk array)

11/7/18 CS162 © UCB Fall 2018 Lec 20.16

Transactions

 Closely related to critical sections for manipulating
shared data structures

* They extend concept of atomic update from memory to
stable storage

— Atomically update multiple persistent data structures

* Many ad-hoc approaches

— FFS carefully ordered the sequence of updates so that if a
crash occurred while manipulating directory or inodes the disk
scan on reboot would detect and recover the error (fsck)

— Applications use temporary files and rename

11/7/18 CS162 © UCB Fall 2018 Lec 20.17

Key Concept: Transaction

* An atomic sequence of actions (reads/writes) on a
storage system (or database)

* That takes it from one consistent state to another

, W transaction ,
consistent state | consistent state 2

)

11/7/18 CS162 © UCB Fall 2018 Lec 20.18

Typical Structure

* Begin a transaction — get transaction id

* Do a bunch of updates
— If any fail along the way, roll-back

— O, if any conflicts with other transactions, roll-back

e Commit the transaction

11/7/18 CS162 © UCB Fall 2018 Lec 20.19

“Classic” Example: Transaction

BEGIN; --BEGIN TRANSACTION
UPDATE accounts SET balance = balance - 100.00 WHERE
name = 'Alice’;

UPDATE branches SET balance = balance - 100.00 WHERE

name = (SELECT branch _name FROM accounts WHERE name
= 'Alice');

UPDATE accounts SET balance = balance + 100.00 WHERE
name = 'Bob’;

UPDATE branches SET balance = balance + 100.00 WHERE
name = (SELECT branch_name FROM accounts WHERE name
= 'Bob');

COMMIT; --COMMIT WORK

Transfer $100 from Alice’s account to Bob’s account

11/7/18 CS162 © UCB Fall 2018 Lec 20.20

The ACID properties of Transactions

* Atomicity: all actions in the transaction happen, or none
happen

* Consistency: transactions maintain data integrity, e.g,,

— Balance cannot be negative

— Cannot reschedule meeting on February 30

* Isolation: execution of one transaction Is isolated from
that of all others; no problems from concurrency

Durability: It a transaction commits, its effects persist
despite crashes

11/7/18 CS162 © UCB Fall 2018 Lec 20.21

Break

11/7/18 CS162 © UCB Fall 2018 Lec 20.22

Transactional File Systems (1/2)

* Better reliability through use of log
— All changes are treated as transactions
— A transaction Is committed once it is written to the log
» Data forced to disk for reliability (improve perf. w/ NVRAM)

— File system may not be updated immediately, data preserved In
the log

 Difference between “Log Structured” and "Journaling”
—In a Log Structured filesystem, data stays in log form

— In a Journaling filesystem, Log used for recovery

11/7/18 CS162 © UCB Fall 2018 Lec 20.23

Transactional File Systems (2/2)

* Journaling File System

— Applies updates to system metadata using transactions
(using logs, etc.)

— Updates to non-directory files (i.e., user stuff) can be done In
place (without logs), full logging optional

— BExt NTFS, Apple HFSH, Linux XFS, JFS, ext3, ext4

11/7/18 CS162 © UCB Fall 2018 Lec 20.24

Logging File Systems (1/2)

* Full Logging File System

— All updates to disk are done in transactions

* Instead of modifying data structures on disk directly, write changes to a
journal/log

— Intention list: set of changes we intend to make
— Log/Journal is append-only
— Single commit record commits transaction

* Once changes are in log, it Is safe to apply changes to data structures
on disk

— Recovery can read log to see what changes were intended
— Can take our time making the changes

» As long as new requests consult the log first

11/7/18 CS162 © UCB Fall 2018 Lec 20.25

Logging File Systems (2/2)

Once changes are copied, safe to remove log
e But, ...

— If the last atomic action is not done ... poof ... all gone

Basic assumption:
— Updates to sectors are atomic and ordered

— Not necessarily true unless very careful, but key assumption

Performance
— Great for random writes: replace with appends to log

— Impact read performance, but can alleviate this by caching

11/7/18 CS162 © UCB Fall 2018 Lec 20.26

Redo Logging

* Prepare * Recovery
— Write all changes (in — Read log
transaction) to log — Redo any operations for
e Commit committed transactions
— Single disk write to make — Garbage collect log
transaction durable
* Redo

— Copy changes to disk
* Garbage collection

— Reclaim space in log

11/7/18 CS162 © UCB Fall 2018 Lec 20.27

Example: Creating a File

* Find free data block(s)

* Find free inode entry

Free space
map

* Find dirent insertion point Data blocks

Inode table

* Write map (i.e,, mark used)

Directory
entries

* Write inode entry to point to
block(s)

* Write dirent to point to inode

11/7/18 CS162 © UCB Fall 2018 Lec 20.28

Ex: Creating a file (as a transaction)
Find free data block(s)

Find free inode entry

* Find dirent insertion point

Free space
“““““““““““““““““““““““““““““““ map
* |:|Og:| Write map (Used) Data blocks
* [log] Write inode entry to point to Inode table
block(s)
Directory
entries

* [log] Write dirent to point to inode
tail head

o

Log in non-volatile storage (Flash or on Disk)

start

commit

11/7/18 CS162 © UCB Fall 2018 Lec 20.29

ReDo Log

o After Commit

]: ST Free space

map

Il... . Data blocks

.‘. Inode table

* All access to file system first
looks In log

* BEventually copy changes to disk

Directory
entries

tail tail ¢y head

done .g £
173 ~~ c
— S
Log in non-volatile storage (Flash) pending i

11/7/18 CS162 © UCB Fall 2018 Lec 20.30

Crash During Logging — Recover

* Upon recovery scan the log

e Detect transaction start with

Free space

NOo commit map
Data blocks
* Discard log entries Inode table
Directory

* Disk remains unchanged

entries

tail head

done

b

11/7/18 CS162 © UCB Fall 2018 Lec 20.31

start

Log in non-volatile storage (Flash or on Disk)

Recovery After Commit

* Scan log, find start

* Find matching commit

Free space
map

Data blocks

e Redo 1t as usual

Inode table

— Or just let it happen later

Directory
entries

head

|

tail

done

start

U

Log in non-volatile storage (Flash or on Disk)

commit

11/7/18 CS162 © UCB Fall 2018 Lec 20.32

11/7/18

Course Structure: Spiral

%‘o\\@ Sy SE@@?
5
&
S nce Q.
;e e
% O intro \& S?-
= A &
N (9) 3v° &9
% A>ug2a éév
4 O

CS162 © UCB Fall 2018 Lec 20.33

Societal Scale Information Systems

* The world is a large distributed system i =g
— Microprocessors in everything -

_ Vast infrastructure behind them romse 1oy

llllll

Scalable, Reliable,
Secure Services

Internet
Connectivity

Databases
Information Collection
Remote Storage
Online Games
Commerce

MEMS for
Sensor Nets

11/7/18 CS162 © UCB Fall 2018 Lec 20.34

Centralized vs Distributed Systems

Client/Server Model
Peer-to-Peer Model

* Centralized System: System in which major functions are performed
by a single physical computer
— Oniginally, everything on single computer
— Later: client/server model

11/7/18 CS162 © UCB Fall 2018 Lec 20.35

Centralized vs Distributed Systems

Client/Server Model
Peer-to-Peer Model

* Distributed System: physically separate computers working together
on some task

— Early model: multiple servers working together
» Probably in the same room or building
» Often called a “cluster”
— Later models: peer-to-peer/wide-spread collaboration

11/7/18 CS162 © UCB Fall 2018 Lec 20.36

Distributed Systems: Motivation/lssues/Promise

* Why do we want distributed systems?
— Cheaper and easier to build lots of simple computers
— Easier to add power incrementally
— Users can have complete control over some components
— Collaboration: much easier for users to collaborate through network
resources (such as network file systems)

* The promise of distributed system:s:
— Higher availability: one machine goes down, use another
— Better durabllity: store data in multiple locations
— More security: each piece easier to make secure

11/7/18 CS162 © UCB Fall 2018 Lec 20.37

Distributed Systems: Reality

* Reality has been disappointing
— Worse availability: depend on every machine being up
» Lamport: “a distributed system Is one where | can't do work
because some machine I've never heard of isn't working!”
— Worse reliability: can lose data if any machine crashes
— Worse security: anyone in world can break into system

* Coordination 1s more difficult
— Must coordinate multiple copies of shared state information (using
only a network)
— What would be easy in a centralized system becomes a lot more

difficult

11/7/18 CS162 © UCB Fall 2018 Lec 20.38

Distributed Systems: Goals/Requirements

* [ransparency: the ablility of the system to mask its
complexity behind a simple interface

* Possible transparencies:
— Location: Can't tell where resources are located
— Migration: Resources may move without the user knowing
— Replication: Can't tell how many copies of resource exist
— Concurrency: Can't tell how many users there are

— Parallelism: System may speed up large jobs by splitting them into
smaller pieces

— Fault Tolerance: System may hide various things that go wrong
* Transparency and collaboration require some way for
different processors to communicate with one another

11/7/18 CS162 © UCB Fall 2018 Lec 20.39

Summary

* RAID: Redundant Arrays of Inexpensive Disks
— RAID I mirroring, RAIDS: Parity block

* Use of Log to improve Reliability
— Journaling file systems such as ext3, NTFS

* [ransactions: ACID semantics
— Atomicity
— Consistency
— Isolation
— Durabllity

11/7/18 CS162 © UCB Fall 2018 Lec 20.40

