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Goals of Today’s Lecture
• End-to-end principle (argument)

• TCP flow control
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Basic Observation
• Some types of network functionality can only be correctly 

implemented end-to-end
– Reliability, security, etc

• Because of this, end hosts:
– Can satisfy the requirement without network’s help
– Will/must do so, since can’t rely on network’s help

• Therefore don’t go out of your way to implement them in 
the network
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Example: Reliable File Transfer

• Solution 1: make each step reliable, and then concatenate them

• Solution 2: end-to-end check and try again if necessary

OS

Appl.

OS

Appl.

Host A Host B

OK
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Discussion

• Solution 1 is incomplete
– What happens if memory is corrupted?
– Receiver has to do the check anyway!

• Solution 2 is complete
– Full functionality can be entirely implemented at application layer 

with no need for reliability from lower layers

• Is there any need to implement reliability at lower layers?
– Well, it could be more efficient
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End-to-End Principle

Implementing this functionality in the network:
• Doesn’t reduce host implementation complexity
• Does increase network complexity
• Probably imposes delay and overhead on all applications, even 

if they don’t need functionality

• However, implementing in network can enhance performance 
in some cases

– E.g., very lossy link
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Conservative Interpretation of E2E

• Don’t implement a function at the lower levels of the system 
unless it can be completely implemented at this level

• Unless you can relieve the burden from hosts, don’t bother



Lec 21.811/26/2018 CS162 ©UCB Fall 2018

Moderate Interpretation

• Think twice before implementing functionality in the network

• If hosts can implement functionality correctly, implement it in 
a lower layer only as a performance enhancement

• But do so only if it does not impose burden on applications 
that do not require that functionality

• This is the interpretation we are using
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BREAK
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Administrivia

• Midterm 3 coming up on Wen 11/28 5:00-6:30PM
– All topics:

» Focus will be on Lectures 18 – 23 and associated readings, 
and Projects 3

» But expect 20-30% questions from materials from 
Lectures 1-17

– Closed book
– 2 pages hand-written notes both sides
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Goals of Today’s Lecture
• End-to-end principle (argument)

• TCP flow control
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Flow Control
• Recall: Flow control ensures a fast sender does not  overwhelm a 

slow receiver
• Example: Producer-consumer with bounded buffer (Lecture 5)

– A buffer between producer and consumer
– Producer puts items into buffer as long as buffer not full
– Consumer consumes items from buffer

Produ-
cer

Con-
sumer

buffer
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TCP Flow Control
• TCP: sliding window protocol at byte (not packet) level

– Go-back-N: TCP Tahoe, Reno, New Reno
– Selective Repeat (SR): TCP Sack 

• Receiver tells sender how many more bytes it can receive 
without overflowing its buffer (i.e., AdvertisedWindow)

• The ack(nowledgement) contains sequence number N of next 
byte the receiver expects, i.e., receiver has received all bytes in 
sequence up to and including N-1
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TCP Flow Control

• TCP/IP implemented by OS (Kernel)
– Cannot do context switching on sending/receiving every packet

» At 1Gbps, it takes 12 usec to send an 1500 bytes, and 
0.8usec to send an 100 byte packet  

• Need buffers to match … 
– sending app with sending TCP
– receiving TCP with receiving app

Sending Process Receiving Process

OS
(TCP/IP) OS

(TCP/IP)
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TCP Flow Control

• Three pairs of producer-consumer’s
① sending process à sending TCP
② Sending TCP à receiving TCP
③ receiving TCP à receiving process

Sending Process Receiving Process

TCP layer TCP layer

IP layer IP layer
OS

1

2

3
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TCP Flow Control

• Example assumptions: 
– Maximum IP packet size = 100 bytes
– Size of the receiving buffer (MaxRcvBuf) = 300 bytes

• Recall, ack indicates the next expected byte in-sequence, not the last 
received byte 

• Use circular buffers

Sending Process Receiving Process

TCP layer TCP layer

IP layer IP layer

300 bytes

OS
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Circular Buffer
• Assume

– A buffer of size N
– A stream of bytes, where bytes have increasing sequence numbers

» Think of stream as an unbounded array of bytes and of sequence number as 
indexes in this array

• Buffer stores at most N consecutive bytes from the stream
• Byte k stored at position (k mod N) + 1 in the buffer

H E L L O R LW O
27 28 29 30 31 32 33 34 35 36

sequence  #

1 2 3 4 5 6 7 8 9 10

Circular buffer
(N = 10)

buffered data

(28 mod 10) + 1 = 9 

E LO RW O EL

(35 mod 10) + 1 = 6 

startend
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TCP Flow Control

• LastByteWritten: last byte written by sending process 
• LastByteSent: last byte sent by sender to receiver
• LastByteAcked: last ack received by sender from receiver
• LastByteRcvd: last byte received by receiver from sender
• NextByteExpected: last in-sequence byte expected by receiver
• LastByteRead: last byte read by the receiving process

LastByteAcked(0) LastByteSent(0)

Sending Process

NextByteExpected(1)LastByteRcvd(0)

LastByteRead(0)

Receiving Process

LastByteWritten(0)
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TCP Flow Control

Receiving Process

NextByteExpected LastByteRcvd

LastByteRead

• AdvertisedWindow: number of bytes TCP receiver can receive

• SenderWindow: number of bytes TCP sender can send

AdvertisedWindow = MaxRcvBuffer – (LastByteRcvd – LastByteRead)

SenderWindow = AdvertisedWindow – (LastByteSent – LastByteAcked)

LastByteAcked

Sending Process

LastByteWritten

LastByteSent

MaxRcvBufferMaxSendBuffer
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TCP Flow Control

Receiving Process

NextByteExpected LastByteRcvd

LastByteRead

• Still true if receiver missed data….

• WriteWindow: number of bytes sending process can write

AdvertisedWindow = MaxRcvBuffer – (LastByteRcvd – LastByteRead)

WriteWindow = MaxSendBuffer – (LastByteWritten – LastByteAcked)

LastByteAcked

Sending Process

LastByteWritten

LastByteSent

MaxRcvBufferMaxSendBuffer
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TCP Flow Control

• Sending app sends 350 bytes
• Recall: 

– We assume IP only accepts packets no larger than 100 bytes
– MaxRcvBuf = 300 bytes, so initial Advertised Window = 300 byets

LastByteAcked(0) LastByteSent(0)

Sending Process

NextByteExpected(1)LastByteRcvd(0)

LastByteRead(0)

Receiving Process

LastByteWritten(350)
1, 350
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1, 350

TCP Flow Control

LastByteAcked(0)

Sending Process

LastByteRead(0)

Receiving Process

LastByteWritten(350)
101, 350

LastByteSent(100)

1,
100

NextByteExpected(101)LastByteRcvd(100)

1, 
100

Data[1,100]{[1,100]}
{[1,100]}

tim
eSender sends first packet (i.e., first 100 bytes) 

and receiver gets the packet
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TCP Flow Control

Data[1,100]{[1,100]}
{[1,100]}

Receiver sends ack for 1st packet
AdvWin = MaxRcvBuffer – (LastByteRcvd – LastByteRead) 

= 300 – (100 – 0) = 200

1, 350

LastByteAcked(0)

Sending Process

LastByteRead(0)

Receiving Process

LastByteWritten(350)
101, 350

LastByteSent(100)

1,
100

NextByteExpected(101)LastByteRcvd(100)

1, 
100
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TCP Flow Control

LastByteAcked(0)

Sending Process

LastByteRead(0)

Receiving Process

LastByteWritten(350)

LastByteSent(200) NextByteExpected(201)LastByteRcvd(200)

101, 
200

Sender sends 2nd packet (i.e., next 100 bytes) 
and receiver gets the packet

Data[101,200]{[1,200]}
{[1,200]}

1,
100 101, 350101,

200 201, 350

Data[1,100]{[1,100]}
{[1,100]}

1, 
100
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TCP Flow Control

LastByteAcked(0)

Sending Process

LastByteRead(0)

Receiving Process

LastByteWritten(350)

LastByteSent(200) NextByteExpected(201)LastByteRcvd(200)

1, 200

Data[101,200]{[1,200]}
{[1,200]}

101, 3501, 200 201, 350

Data[1,100]{[1,100]}
{[1,100]}

Sender sends 2nd packet (i.e., next 100 bytes) 
and receiver gets the packet
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TCP Flow Control

LastByteAcked(0)

Sending Process

LastByteWritten(350)

LastByteSent(200)

Data[101,200]{[1,200]}
{[1,200]}

101, 3501, 200 201, 350

Data[1,100]{[1,100]}
{[1,100]}

Receiving TCP delivers first 100 bytes to 
recienving process

LastByteRead(100)

Receiving Process

NextByteExpected(201)LastByteRcvd(200)

101, 
200

1, 
100
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TCP Flow Control

LastByteAcked(0)

Sending Process

LastByteWritten(350)

LastByteSent(200)

Data[101,200]{[1,200]}
{[1,200]}

101, 3501, 200 201, 350

Data[1,100]{[1,100]}
{[1,100]}

Receiver sends ack for 2nd packet
AdvWin = MaxRcvBuffer – (LastByteRcvd – LastByteRead) 

= 300 – (200 – 100) = 200

LastByteRead(100)

Receiving Process

NextByteExpected(201)LastByteRcvd(200)

101, 
200
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TCP Flow Control

LastByteAcked(0)

Sending Process

LastByteWritten(350)

LastByteSent(300)

Data[101,200]{[1,200]}
{[1,200]}

101, 3501, 200 201, 350

Data[1,100]{[1,100]}
{[1,100]}

Sender sends 3rd packet (i.e., next 100 bytes) 
and the packet is lost

201,
300

{[1,300]} Data[201,300]

301, 
350

LastByteRead(100)

Receiving Process

NextByteExpected(201)LastByteRcvd(200)

101, 
200
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TCP Flow Control

LastByteAcked(0)

Sending Process

LastByteWritten(350)

LastByteSent(300)

Data[101,200]{[1,200]}
{[1,200]}

101, 350201, 350

Data[1,100]{[1,100]}
{[1,100]}

Sender stops sending as window full 
SndWin = AdvWin – (LastByteSent – LastByteAcked) 

= 300 – (300 – 0) = 0

1,300

{[1,300]} Data[201,300]

301, 
350

LastByteRead(100)

Receiving Process

NextByteExpected(201)LastByteRcvd(200)

101, 
200
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TCP Flow Control

LastByteAcked(0)

Sending Process

LastByteWritten(350)

LastByteSent(300)

101, 350201, 350

Data[1,100]{[1,100]}
{[1,100]}

• Sender gets ack for 1st packet
• AdWin = 200

1,300

{[1,300]} Data[201,300]

301, 
350

Ack=101, AdvWin = 200

Data[101,200]{[1,200]}
{[1,200]}

LastByteRead(100)

Receiving Process

NextByteExpected(201)LastByteRcvd(200)

101, 
200
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TCP Flow Control

LastByteAcked(100)

Sending Process

LastByteWritten(350)

LastByteSent(300)

101, 350201, 350

Data[1,100]{[1,100]}
{[1,100]}

101,300

{[1,300]} Data[201,300]

301, 
350

Ack=101, AdvWin = 200{101, 300}

Data[101,200]{[1,200]}
{[1,200]}

• Ack for 1st packet (ack indicates next byte 
expected by receiver)

• Receiver no longer needs first 100 bytes

LastByteRead(100)

Receiving Process

NextByteExpected(201)LastByteRcvd(200)

101, 
200
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TCP Flow Control

LastByteAcked(100)

Sending Process

LastByteWritten(350)

LastByteSent(300)

101, 350201, 350

Data[1,100]{[1,100]}
{[1,100]}

101,300

{[1,300]} Data[201,300]

301, 
350

Ack=101, AdvWin = 200{101, 300}

Data[101,200]{[1,200]}
{[1,200]}

Sender still cannot send as window full
SndWin = AdvWin – (LastByteSent – LastByteAcked) 

= 200 – (300 – 100) = 0

LastByteRead(100)

Receiving Process

NextByteExpected(201)LastByteRcvd(200)

101, 
200
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TCP Flow Control

LastByteAcked(100)

Sending Process

LastByteRead(100)

Receiving Process

LastByteWritten(350)

LastByteSent(300) NextByteExpected(201)LastByteRcvd(200)

101, 
200101, 350201, 350

Data[1,100]{[1,100]}
{[1,100]}

• Receiver gets ack for 2nd packet
• AdvWin = 200 bytes

101,300

{[1,300]} Data[201,300]

301, 
350

{101, 300}

Data[101,200]{[1,200]}
{[101,200]}

Ack=201, AdvWin = 200{201, 300}
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TCP Flow Control

LastByteAcked(200)

Sending Process

LastByteRead(100)

Receiving Process

LastByteWritten(350)

NextByteExpected(201)LastByteRcvd(200)

101, 350201, 350

Data[1,100]{[1,100]}
{[1,100]}

201,
300

{[1,300]} Data[201,300]

301, 
350

{101, 300}

Data[101,200]{[1,200]}
{[101,200]}

Ack=201, AdvWin = 200{201, 300}

Sender can now send new data! 
SndWin = AdvWin – (LasByteSent – LastByteAcked) = 100

101, 
200

LastByteSent(300)
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TCP Flow Control

LastByteAcked(200)

Sending Process

LastByteRead(100)

Receiving Process

LastByteWritten(350)

NextByteExpected(201)LastByteRcvd(350)

101, 350201, 350

Data[1,100]{[1,100]}
{[1,100]}

201,
300

{[1,300]} Data[201,300]

301, 
350

{101, 300}

Data[101,200]{[1,200]}
{[101,200]}

101, 
200

Data[301,350]{[201,350]}
{[101,200],[301,350]}

301,
350

LastByteSent(350)

301, 
350
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TCP Flow Control

LastByteAcked(200)

Sending Process

LastByteRead(100)

Receiving Process

LastByteWritten(350)

NextByteExpected(201)LastByteRcvd(350)

101, 350201, 350

Data[1,100]{[1,100]}
{[1,100]}

201,
300

{[1,300]} Data[201,300]

301, 
350

{101, 300}

Data[101,200]{[1,200]}
{[101,200]}

101, 
200

Data[301,350]{[201,350]}
{[101,200],[301,350]}

301,
350

LastByteSent(350)

301, 
350

Ack=201, AdvWin = 50{201, 350}
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TCP Flow Control

LastByteAcked(200)

Sending Process

LastByteRead(100)

Receiving Process

LastByteWritten(350)

NextByteExpected(201)LastByteRcvd(350)

101, 350201, 350201,
300

301, 
350

101, 
200

301,
350

LastByteSent(350)

301, 
350

Data[301,350]{[201,350]}
{[101,200],[301,350]}

Ack=201, AdvWin = 50{201, 350}• Ack still specifies 201 (first byte out of sequence) 
• AdvWin = 50, so can sender re-send 3rd packet?



Lec 21.3811/26/2018 CS162 ©UCB Fall 2018

TCP Flow Control

LastByteAcked(200)

Sending Process

LastByteRead(100)

Receiving Process

LastByteWritten(350)

NextByteExpected(201)LastByteRcvd(350)

101, 350201, 350201,
300

301, 
350

101, 
200

301,
350

LastByteSent(350)

301, 
350

Data[301,350]{[201,350]}
{[101,200],[301,350]}

Ack=201, AdvWin = 50{201, 350}

• Ack still specifies 201 (first byte out of sequence) 
• AdvWin = 50, so can sender re-send 3rd packet?
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TCP Flow Control

LastByteAcked(200)

Sending Process

LastByteRead(100)

Receiving Process

LastByteWritten(350)

LastByteRcvd(350) NextByteExpected(351)

101, 350201, 350201,
300

301, 
350

101, 
200

Data[301,350]{[201,350]}
{[101,200],[301,350]}

301,
350

LastByteSent(350)

301, 
350

Ack=201, AdvWin = 50{201, 350}

Yes! Sender can re-send 2nd packet since it’s in existing window 
– won’t cause receiver window to grow  

Data[201,300]{[201,350]}
{[101,350]}

201, 
300
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TCP Flow Control

LastByteAcked(200)

Sending Process

LastByteRead(100)

Receiving Process

LastByteWritten(350)

LastByteRcvd(350) NextByteExpected(351)

101, 350201, 350201,
300

301, 
350 101, 350

Data[301,350]{[201,350]}
{[101,200],[301,350]}

301,
350

LastByteSent(350)

Ack=201, AdvWin = 50{201, 350}

Yes! Sender can re-send 2nd packet since it’s in existing window 
– won’t cause receiver window to grow  

Data[201,300]{[201,350]}
{[101,350]}
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TCP Flow Control

LastByteAcked(200)

Sending Process

LastByteRead(100)

Receiving Process

LastByteWritten(350)

LastByteRcvd(350) NextByteExpected(351)

101, 350

Data[301,350]{[201,350]}
{[101,200],[301,350]}

LastByteSent(350)

Ack=201, AdvWin = 50{201, 350}

• Sender gets 3rd packet and sends Ack for 351
• AdvWin = 50

Data[201,300]{[201,350]}
{[101,350]}

Ack=351, AdvWin = 50{}

201,
300

301,
350
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TCP Flow Control

LastByteAcked(350)

Sending Process

LastByteRead(100)

Receiving Process

LastByteWritten(350)

LastByteRcvd(350) NextByteExpected(351)

101, 350

Data[301,350]{[201,350]}
{[101,200],[301,350]}

LastByteSent(350)

Ack=201, AdvWin = 50{201, 350}

Sender DONE with sending all bytes! 

Data[201,300]{[201,350]}
{[101,350]}

Ack=351, AdvWin = 50{}
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Discussion
• Why not have a huge buffer at the receiver (memory is 

cheap!)?

• Sending window (SndWnd) also depends on network 
congestion

– Congestion control: ensure that  a fast receiver doesn’t 
overwhelm a router in the network (discussed in detail in 
cs168)

• In practice there is another set of buffers in the protocol 
stack, at the link layer (i.e., Network Interface Card)
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Summary

• E2E argument encourages us to keep IP simple
– If higher layer can implement functionality correctly, implement it in a lower 

layer only if
» it improves the performance significantly for application that need that 

functionality, and
» it does not impose burden on applications that do not require that 

functionality

• Flow control
– Avoid the sender over-flowing the receiver buffer
– Receiver only reads in-sequence data, and acks with the next sequence 

number is waiting for
– Sender never sends more data than the receiver can hold in its buffer 
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THANKS, AND GOOD LUCK!


