CS162
Operating Systems and
Systems Programming

Lecture 22

E2E Argument,
TCP Flow Control

November 26%, 2018
Prof. lon Stoica
http://cs | 62.eecs.Berkeley.edu

Goals of Today’s Lecture

* End-to-end principle (argument)

e TCP flow control

11/26/2018 CS162 ©UCB Fall 2018 Lec 21.2

Basic Observation

* Some types of network functionality can only be correctly
implemented end-to-end

— Reliability, security, etc
* Because of this, end hosts:
— Can satisfy the requirement without network’s help

— Will/must do so, since can't rely on network’s help

* Therefore don’t go out of your way to implement them in
the network

11/26/2018 CS162 ©UCB Fall 2018 Lec 21.3

Example: Reliable File Transfer

Host A

_ oK %

* Solution |: make each step reliable, and then concatenate them

* Solution 2: end-to-end check and try again if necessary

11/26/2018 CS162 ©UCB Fall 2018 Lec 21.4

Discussion

* Solution | is incomplete
— What happens if memory is corrupted?

— Receliver has to do the check anyway!

* Solution 2 is complete

— Full functionality can be entirely implemented at application layer
with no need for reliability from lower layers

* |s there any need to implement reliability at lower layers?

— Well, it could be more efficient

11/26/2018 CS162 ©UCB Fall 2018 Lec 21.5

End-to-End Principle

Implementing this functionality in the network:
* Doesnt reduce host implementation complexity
* Does increase network complexity

* Probably imposes delay and overhead on all applications, even
if they don't need functionality

* However, implementing in network can enhance performance
In some cases

— kg, very lossy link

11/26/2018 CS162 ©UCB Fall 2018 Lec 21.6

Conservative Interpretation of E2E

* Don't implement a function at the lower levels of the system
unless 1t can be completely implemented at this level

* Unless you can relieve the burden from hosts, don't bother

11/26/2018 CS162 ©UCB Fall 2018 Lec 21.7

Moderate Interpretation

Think twice before implementing functionality in the network

If hosts can implement functionality correctly, implement it in
a lower layer only as a performance enhancement

But do so only If it does not impose burden on applications
that do not require that functionality

This is the interpretation we are using

11/26/2018 CS162 ©UCB Fall 2018 Lec 21.8

BREAK

11/26/2018 CS162 ©UCB Fall 2018 Lec 21.9

Administrivia

* Midterm 3 coming up on Wen | 1/28 5:00-6:30PM
— All topics:

» Focus will be on Lectures |8 — 23 and associated readings,
and Projects 3

» But expect 20-30% questions from materials from
Lectures [-17

— Closed book

— 2 pages hand-written notes both sides

11/26/2018 CS162 ©UCB Fall 2018 Lec 21.10

Goals of Today’s Lecture

* End-to-end principle (argument)

e TCP flow control

11/26/2018 CS162 ©UCB Fall 2018 Lec 21.11

Flow Control

e Recall: Flow control ensures a fast sender does not overwhelm a
slow receiver

* Example: Producer-consumer with bounded buffer (Lecture 5)
— A buffer between producer and consumer
— Producer puts items into buffer as long as buffer not full

— Consumer consumes items from buffer

buffer

Produ-
cer

11/26/2018 CS162 ©UCB Fall 2018 Lec 21.12

TCP Flow Control

« TCP: sliding window protocol at byte (not packet) level
— Go-back-N: TCP Tahoe, Reno, New Reno
— Selective Repeat (SR): TCP Sack

* Recelver tells sender how many more bytes it can receive
without overflowing its buffer (.e., AdvertisedWindow)

* The ack(nowledgement) contains sequence number N of next
byte the receiver expects, I.e., receiver has received all bytes in
sequence up to and including N- |

11/26/2018 CS162 ©UCB Fall 2018 Lec 21.13

TC

P Flow Control

0S
(TCP/IP)

Sending Process

/

OS

(TCP/IP)

* TCP/IP implemented by OS (Kemel)
— Cannot do context switching on sending/receiving every packet

» At 1 Gbps, it takes |2 usec to send an 1500 bytes, and

0.8usec to send

an 100 byte packet

* Need buffers to match ...
— sending app with sending TCP

11/26/2018

— receiving TCP with receiving app

CS162 ©UCB Fall 2018

Lec 21.14

TCP Flow Control

Sending Process

" TCP layer | @] TCP layer

4

0SH \ /

IP layer ¥ J IP layer
] ®
* Three pairs of producer-consumer’ s
@ sending process = sending TCP
@ Sending TCP = receiving TCP

@ receiving TCP = receiving process

11/26/2018 CS162 ©UCB Fall 2018 Lec 21.15

TCP Flow Control

Sending Process

" TCP layer f — / TCP layer
ytes

0SH \ /

IP layer k J IP layer

* Example assumptions:

— Maximum |P packet size = 100 bytes
— Size of the receiving buffer (MaxRevBuf) = 300 bytes

* Recall, ack indicates the next expected byte in-sequence, not the last
received byte

e Use circular buffers

11/26/2018 CS162 ©UCB Fall 2018 Lec 21.16

Circular Buffer

e Assume
— A buffer of size N

— A stream of bytes, where bytes have increasing sequence numbers

» Think of stream as an unbounded array of bytes and of sequence number as
iIndexes in this array

 Buffer stores at most N consecutive bytes from the stream

* Byte k stored at position (k mod N) + | in the buffer

buffered data

A
sequence # i !

\‘27 28 29 30 31 32 33 34 35 36

HIE|L|L]O W|O|R|L

(28 mod 10) +1 =9 (35 mod 10) +1 =6
E)I\llrciu:ecl)r)buffer Llo wlolRr ElL
B 1 2 3 4 5 617 8 9110
end start

11/26/2018 CS162 ©UCB Fall 2018 Lec 21.17

TCP Flow Control

Sending Process

LastByteWritten(0) LastByteRead(0)

A

LastByteAcked(0) LastByteSent(0) LastByteRcvd(0) NextByteExpected(1)

* LastByteWritten: last byte written by sending process
 LastByteSent: last byte sent by sender to receiver
 LastByteAcked: last ack received by sender from receiver

* LastByteRcvd: last byte received by receiver from sender

* NextBytebxpected: last in-sequence byte expected by receiver
 [astByteRead: last byte read by the receiving process

11/26/2018 CS162 ©UCB Fall 2018 Lec 21.18

TCP Flow Control

Sending Process

/
LastByteWritten A.astByteRead
MaxSendBuffer MaxRcvBuffer
LastByteAcked LastByteSent NextByteExpected LastByteRcvd

* AdvertisedWindow: number of bytes TCP receiver can receive

AdvertisedWindow = MaxRcvBuffer — (LastByteRcvd — LastByteRead)

* SenderWindow: number of bytes TCP sender can send

SenderWindow = AdvertisedWindow — (LastByteSent — LastByteAcked)

11/26/2018 CS162 ©UCB Fall 2018 Lec 21.19

TCP Flow Control

Sending Process

/
LastByteWritten A.astByteRead
MaxSendBuffer MaxRcvBuffer
LastByteAcked LastByteSent NextByteExpected LastByteRcvd

o Still true If receiver missed data....

AdvertisedWindow = MaxRcvBuffer — (LastByteRcvd — LastByteRead)

* WriteWindow: number of bytes sending process can write

WriteWindow = MaxSendBuffer — (LastByteWritten — LastByteAcked)

11/26/2018 CS162 ©UCB Fall 2018 Lec 21.20

TCP Flow Control

Sending Process

LastByteWritten(350)\' LastByteRead(0)
1, 350
LastByteAcked(0) LastByteSent(0) LastByteRcvd(0) NextByteExpected(1)

* Sending app sends 350 bytes
* Recall

— We assume IP only accepts packets no larger than 100 bytes
— MaxRcvBuf = 300 bytes, so initial Advertised Window = 300 byets

11/26/2018 CS162 ©UCB Fall 2018 Lec 21.21

TCP Flow Control

Sending Process
LastByteWritten(350)\' LastByteRead(0)
1, 1,
100, 101, 350 IQQ
LastByteAcked(0) LastByteSent(100) LastByteRcvd(100) NextByteExpected(101)
{[1,100]} Data1,100]
—| {[1,100]}

Sender sends first packet (i.e., first 100 bytes)

and receliver gets the packet
11/26/2018 ToloZ ooCD ramnm Zzouro Lec 21.22

TCP Flow Control

LastByteWritten(350)\' LastByteRead(0)

1 1

’ 101, 350 ’
100 ! 100

LastByteAcked(0) LastByteSent(100) LastByteRcvd(100) NextByteExpected(101)
1,100 Data[1,100]
¢ v o —i{ {[1,100]}
=200
o1, AAVWIT
Ack=10"

Receiver sends ack for |t packet

AdvWin = MaxRcvBuffer — (LastByteRcvd — LastByteRead)
= 300 — (100 — 0) = 200

11/26/2018 CS162 ©UCB Fall 2018 Lec 21.23

TCP Flow Control

LastByteWritten(350)\' LastByteRead(0)
1, 101, 1, 101,
100200 201,990 ?99 ggg
LastByteAcked(0) LastByteSent(200) LastByteRcvd(200) NextByteExpected(201)
{[1,100]} Data[1,100]
{[1,200]} Data[101,200] = {[1,100];
| 700474 {[1,200]}
dV\N\ﬂ‘
,101,P‘
pACK=

Sender sends 29 packet (i.e., next 100 bytes)

and recelver gets the packet
11/26/2018 ToloZ ooCD ramnm Zzouro Lec 21.24

TCP Flow Control

LastByteWritten(350)\' LastByteRead(0)
1, 200 201, 350 1, 200
y \ /’\
LastByteAcked(0) LastByteSent(200) LastByteRcvd(200) NextByteExpected(201)
{[1,100]} Data[1,100]
{[1,200]} Data[101,200] = {[1,100];
| . 70074 {1,200}
Jot, AWV
ACK=1E

Sender sends 29 packet (i.e., next 100 bytes)

and recelver gets the packet
11/26/2018 ToloZ ooCD ramnm Zzouro Lec 21.25

TCP Flow Control

Sending Process

1,

100
LastByteWritten(350) |LastByteRead(100)
1, 200 201, 350 E%E’

LastByteAcked(0) LastByteSent(200) LastByteRcvd(200) NextByteExpected(201)

Data[1,100
{{1,100]} ata[1,100] J q1.100n

{[1,200]} Data[101,200]
_ 20074 {[1,200]}
Jot, AWV

ACK=

Receiving TCP delivers first 100 bytes to

recienving process
11/26/2018 ToloZ ooCD ramnm Zzouro Lec 21.26

TCP Flow Control

Sending Process

LastByteWritten(350)\' LastByteRead(100)
1, 200 201, 350 1gOQ1Q,

LastByteAcked(0) LastByteSent(200) LastByteRcvd(200) NextByteExpected(201)

Data[1,100
{{1,100]} ata[1,100] | q1.100p

{[1,200]} Data[101,200] _—
— 200
,\2 - 200 /

Receiver sends ack for 2™ packet

AdvWin = MaxRcvBuffer — (LastByteRcvd — LastByteRead)
= 300 — (200 — 100) = 200

11/26/2018 CS162 ©UCB Fall 2018 Lec 21.27

TCP Flow Control

Sending Process

LastByteWritten(350) LastByteRead(100)
1 200 201, 301, 101,
| 300 \350 Pa— N
LastByteAcked(0) LastByteSent(300) LastByteRcvd(200) NextByteExpected(201)
{[1,200] Data[101,200]__—{ 119D

{[1,3001]} 00] {{1,2000

\

Sender sends 3™ packet (i.e., next 100 bytes)

and the packet Is lost
11/26/2018 ToloZ ooCD ramnm Zzouro Lec 21.28

TCP Flow Control

Sending Process

LastByteWritten(350) LastByteRead(100)
1300 301, 101,
4 : \ 350 ﬂvv\
LastByteAcked(0) LastByteSent(300) LastByteRcvd(200) NextByteExpected(201)
{[1,200] Data[101,200]__—{ 119D

{[1,3001]} 00] {{1,2000

\

Sender stops sending as window full

SndWin = AdvWin — (LastByteSent — LastByteAcked)
= 300-(300-0) =0

11/26/2018 ColoZ oD ramnm Zzoro ec 21.29

TCP Flow Control

Sending Process

LastByteWritten(350) LastByteRead(100)
301, 101,
| 1,300 \ 250 200
LastByteAcked(0) LastByteSent(300) LastByteRcvd(200) NextByteExpected(201)
{[1,100]} Data1,100]

—! {[1,100]}

{11,200]} 73@“}31?200]4 {11,200]}
{[1,300]} ,300] (/ ’

«— Ack=101, AdvWin = 200

* Sender gets ack for |t packet
* AdWin = 200

11/26/2018 CS162 ©UCB Fall 2018 Lec 21.30

TCP Flow Control

Sending Process

Receiving Process

LastByteWritten(350)
301,
T 101,300 250

LastByteAcked(100) LastByteSent(300)

{[1,1001]}

Data[1,100]

LastByteRead(100)

(11,2001 75@“31?”0]4
{[1,300]} ,300] (/

{101, 300} & Ack=101, AdvWin = 200

—

101,

P N

LastByteRcvd(200) NextByteExpected(201)

{[1,1001]}
{[1,2001}

\.

(« Ack for [packet (ack indicates next byte

expected by receiver)
* Receiver no longer needs first |00 bytes y

\

Lec 21.31

11/26/2018

IITVUL UL D T Adll VIO

TCP Flow Control

Sending Process

Receiving Process

LastByteWritten(350)
101,300 ::330510
T
LastByteAcked(100) LastByteSent(300)
{[1,100]} Data1,100]
{[1,200]} Data[101,200]
{[1,300]} ,300] (/
{101, 300} |« Ack=101, AdvWin = 200

LastByteRead(100)

101,

P N

LastByteRcvd(200) NextByteExpected(201)

—

{[1,1001]}
{[1,2001}

Sender still cannot send as window full

SndWin = AdvWin — (LastByteSent — LastByteAcked)

= 200 (300~ 100) =0

Lec 21.32

11/26/2018

I 1TVL UL D a £LV190

TCP Flow Control

Sending Process

LastByteWritten(350) LastByteRead(100)
301, 101,
101,300 250
! \ <
LastByteAcked(100) LastByteSent(300) LastByteRcvd(200) NextByteExpected(201)
{[1,200]} Data[101,200] =1 {[1,100];

{11.,300]) {[101,200]}

,300]
{101, 300} /4

{201, 300} }— Ack=201, AdvWin = 200

* Receiver gets ack for 2" packet
* AdvWin = 200 bytes
11/26/2018 . Lec 21.33

IITVUL UL D T Adll VIO

TCP Flow Control

Sending Process

LastByteWritten(350) LastByteRead(100)
201, 301, 101,
300 350
— R N
LastByteAcked(200) LastByteSent(300) LastByteRcvd(200) NextByteExpected(201)
{1,100]} Datal1,100] 100
{[1,200]} Data[101,200] =1 {[1,100];

{11.,300]) {[101,200]}

,300]
{101, 300} /4

{201, 300} }— Ack=201, AdvWin = 200

Sender can now send new datal

SndWin = AdvWin — (LasByteSent — LastByteAcked) = 100

11/26/2018 CS162 ©UCB Fall 2018 Lec 21.34

TCP Flow Control

Sending Process

LastByteWritten(350) LastByteRead(100)
201, 301, P 101, 301,
300 350 o]

—— i —
LastByteAcked(200) LastByteSent(350) |LastByteRcvd(350) NextByteExpected(201)
{1,100]} Datal1,100] 100
{[1,200]} Data[101,200] =1 {[1,100];

{11.,300]) {[101,200]}

{101, 300}
{[201,350]}

Data[301,350]

—| {[101,200],[301,350]}

11/26/2018 CS162 ©UCB Fall 2018 Lec 21.35

TCP Flow Control

Sending Process

LastByteWritten(350) LastByteRead(100)
201, 301, P 101, 301,
300 350 o]

—— i —
LastByteAcked(200) LastByteSent(350) |LastByteRcvd(350) NextByteExpected(201)
{1,100]} Datal1,100] 100
{[1,200]} Data[101,200] =1 {[1,100];

{11.,300]) {[101,200]}

{101, 300}
{[201,350]}

Data[301,350]

—| {[101,200],[301,350]}

{201, 350} je— Ack=201, AdvWin = 50

11/26/2018 CS162 ©UCB Fall 2018 Lec 21.36

TCP Flow Control

Sending Process

LastByteWritten(350) LastByteRead(100)
201, 301, P 101, 301,
300 350 o]
—— i —
LastByteAcked(200) LastByteSent(350) |LastByteRcvd(350) NextByteExpected(201)
201,350 Data[301,350]
{ b — 1,350]}

* AdvWin = 50, so can sender re-send 3 packet?

I TOUL OTUCD T all V10O LCU 2|.37

[- Ack still specifies 201 (first byte out of sequence)
11/26/2018

TCP Flow Control

Sending Process

Receiving Process

LastByteWritten(350) LastByteRead(100)
201, 301, P 101, 301,
300 350 o]
—— i —
LastByteAcked(200) LastByteSent(350) |LastByteRcvd(350) NextByteExpected(201)
{[201,350]} Data[301,350]

—| {[101,200],[301,350]}

{201, 350} |Je— Ack=201, AdvWin =50

* AdvWin = 50, so can sender re-send 3 packet?

[- Ack still specifies 201 (first byte out of sequence)
11/26/2018

IO TUVL TUCDUD T all V10

ret 21.38

TCP Flow Control

Sending Process

LastByteWritten(350) LastByteRead(100)
201, 301, P 101, 201, 301,
300 350 oo 200 300 350
/
LastByteAcked(200) LastByteSent(350) |LastByteRcvd(350) NextByteExpected(351)
{[201,350]} Data[301,350]

— —! {[101,200],[301,350]}
(201, 350} fe— Ack=201, AdvWin = 50
{[201,350]} Data[201,300]

| {[101,350]}

— won't cause recelver window to grow

II/26/20|U I 1TV UL D T dAdIl VIO LCU 4 .39

[Yes! Sender can re-send 29 packet since it's in existing window

TCP Flow Control

Sending Process

Receiving Process

LastByteWritten(350) LastByteRead(100)
=0l SO ! 101, 350
30030 | { ____
/ ——
LastByteAcked(200) LastByteSent(350) |LastByteRcvd(350) NextByteExpected(351)

{[201,3501]} Data[301,350]

{201, 350} fe— Ack=201, AdvWin =50
{[201,350]} Datg[gm ,300]

— —| {[101,200],[301,350]}

— {[101,350]}

— won't cause recelver window to grow

[Yes! Sender can re-send 29 packet since it's in existing window

| 1/26/20Yo

I 1TV UL D T dAdIl VIO LCU 4 .40

TCP Flow Control

Sending Process

LastByteWritten(350) | LastByteRead(100)
=0l SO ! 101, 350
30030 | | { ____
LastByteAcked(200) LastByteSent(350) |LastByteRcvd(350) NextByteExpected(351)
{{201,350]} Data[301,350]

— —! {[101,200],[301,350]}
{201, 350} fe— Ack=201, AdvWin =50
{[201,350]} Data[201,300]

—| {[101,350]}

0 le— Ack=351, AdvWin = 50

 Sender gets 3™ packet and sends Ack for 351
* AdvWin =50

11/26/2018 CS162 ©UCB Fall 2018 Lec 21.41

TCP Flow Control

Sending Process

Receiving Process

LastByteWritten(350)\, LastByteRead(100)
101, 350
/
LastByteAcked(350) LastByteSent(350) |LastByteRcvd(350) NextByteExpected(351)

{[201,350]}

{201, 350}
{[201,350]}

{}

Data[301,350]

— —| {[101,200],[301,350]}
— Ack=201, AdvWin =50
Data[201,300]

—| {[101,350]}

o ACk=351, AdvWin = 50

11/26/2018 [

Sender DONE with sending all bytes! J

ColoZ oowD ramnm Zzoro Lec 2|42

Discussion

* Why not have a huge buffer at the receiver (memory is
cheap!)?

* Sending window (SndWnd) also depends on network
congestion

— Congestion control: ensure that a fast receiver doesn't

overwhelm a router in the network (discussed in detail in
cs|68)

* In practice there is another set of buffers in the protocol
stack, at the link layer (i.e., Network Interface Card)

11/26/2018 CS162 ©UCB Fall 2018 Lec 21.43

Summary

* E2E argument encourages us to keep IP simple

— If higher layer can implement functionality correctly, implement it in a lower
layer only if

» It Improves the performance significantly for application that need that
functionality, and

» It does not impose burden on applications that do not require that
functionality

* Fow control
— Avoid the sender over-flowing the receiver buffer

— Receiver only reads in-sequence data, and acks with the next sequence
number is waiting for

— Sender never sends more data than the receiver can hold in its buffer

11/26/2018 CS162 ©UCB Fall 2018 Lec 21.44

THANKS, AND GOOD LUCK!

11/26/2018 CS162 ©UCB Fall 2018 Lec 21.45

