
CS162
Operating Systems and
Systems Programming

Lecture 22

E2E Argument,
TCP Flow Control

November 26th, 2018
Prof. Ion Stoica

http://cs162.eecs.Berkeley.edu

Lec 21.211/26/2018 CS162 ©UCB Fall 2018

Goals of Today’s Lecture
• End-to-end principle (argument)

• TCP flow control

Lec 21.311/26/2018 CS162 ©UCB Fall 2018

Basic Observation
• Some types of network functionality can only be correctly

implemented end-to-end
– Reliability, security, etc

• Because of this, end hosts:
– Can satisfy the requirement without network’s help
– Will/must do so, since can’t rely on network’s help

• Therefore don’t go out of your way to implement them in
the network

Lec 21.411/26/2018 CS162 ©UCB Fall 2018

Example: Reliable File Transfer

• Solution 1: make each step reliable, and then concatenate them

• Solution 2: end-to-end check and try again if necessary

OS

Appl.

OS

Appl.

Host A Host B

OK

Lec 21.511/26/2018 CS162 ©UCB Fall 2018

Discussion

• Solution 1 is incomplete
– What happens if memory is corrupted?
– Receiver has to do the check anyway!

• Solution 2 is complete
– Full functionality can be entirely implemented at application layer

with no need for reliability from lower layers

• Is there any need to implement reliability at lower layers?
– Well, it could be more efficient

Lec 21.611/26/2018 CS162 ©UCB Fall 2018

End-to-End Principle

Implementing this functionality in the network:
• Doesn’t reduce host implementation complexity
• Does increase network complexity
• Probably imposes delay and overhead on all applications, even

if they don’t need functionality

• However, implementing in network can enhance performance
in some cases

– E.g., very lossy link

Lec 21.711/26/2018 CS162 ©UCB Fall 2018

Conservative Interpretation of E2E

• Don’t implement a function at the lower levels of the system
unless it can be completely implemented at this level

• Unless you can relieve the burden from hosts, don’t bother

Lec 21.811/26/2018 CS162 ©UCB Fall 2018

Moderate Interpretation

• Think twice before implementing functionality in the network

• If hosts can implement functionality correctly, implement it in
a lower layer only as a performance enhancement

• But do so only if it does not impose burden on applications
that do not require that functionality

• This is the interpretation we are using

Lec 21.911/26/2018 CS162 ©UCB Fall 2018

BREAK

Lec 21.1011/26/2018 CS162 ©UCB Fall 2018

Administrivia

• Midterm 3 coming up on Wen 11/28 5:00-6:30PM
– All topics:

» Focus will be on Lectures 18 – 23 and associated readings,
and Projects 3

» But expect 20-30% questions from materials from
Lectures 1-17

– Closed book
– 2 pages hand-written notes both sides

Lec 21.1111/26/2018 CS162 ©UCB Fall 2018

Goals of Today’s Lecture
• End-to-end principle (argument)

• TCP flow control

Lec 21.1211/26/2018 CS162 ©UCB Fall 2018

Flow Control
• Recall: Flow control ensures a fast sender does not overwhelm a

slow receiver
• Example: Producer-consumer with bounded buffer (Lecture 5)

– A buffer between producer and consumer
– Producer puts items into buffer as long as buffer not full
– Consumer consumes items from buffer

Produ-
cer

Con-
sumer

buffer

Lec 21.1311/26/2018 CS162 ©UCB Fall 2018

TCP Flow Control
• TCP: sliding window protocol at byte (not packet) level

– Go-back-N: TCP Tahoe, Reno, New Reno
– Selective Repeat (SR): TCP Sack

• Receiver tells sender how many more bytes it can receive
without overflowing its buffer (i.e., AdvertisedWindow)

• The ack(nowledgement) contains sequence number N of next
byte the receiver expects, i.e., receiver has received all bytes in
sequence up to and including N-1

Lec 21.1411/26/2018 CS162 ©UCB Fall 2018

TCP Flow Control

• TCP/IP implemented by OS (Kernel)
– Cannot do context switching on sending/receiving every packet

» At 1Gbps, it takes 12 usec to send an 1500 bytes, and
0.8usec to send an 100 byte packet

• Need buffers to match …
– sending app with sending TCP
– receiving TCP with receiving app

Sending Process Receiving Process

OS
(TCP/IP) OS

(TCP/IP)

Lec 21.1511/26/2018 CS162 ©UCB Fall 2018

TCP Flow Control

• Three pairs of producer-consumer’s
① sending process à sending TCP
② Sending TCP à receiving TCP
③ receiving TCP à receiving process

Sending Process Receiving Process

TCP layer TCP layer

IP layer IP layer
OS

1

2

3

Lec 21.1611/26/2018 CS162 ©UCB Fall 2018

TCP Flow Control

• Example assumptions:
– Maximum IP packet size = 100 bytes
– Size of the receiving buffer (MaxRcvBuf) = 300 bytes

• Recall, ack indicates the next expected byte in-sequence, not the last
received byte

• Use circular buffers

Sending Process Receiving Process

TCP layer TCP layer

IP layer IP layer

300 bytes

OS

Lec 21.1711/26/2018 CS162 ©UCB Fall 2018

Circular Buffer
• Assume

– A buffer of size N
– A stream of bytes, where bytes have increasing sequence numbers

» Think of stream as an unbounded array of bytes and of sequence number as
indexes in this array

• Buffer stores at most N consecutive bytes from the stream
• Byte k stored at position (k mod N) + 1 in the buffer

H E L L O R LW O
27 28 29 30 31 32 33 34 35 36

sequence #

1 2 3 4 5 6 7 8 9 10

Circular buffer
(N = 10)

buffered data

(28 mod 10) + 1 = 9

E LO RW O EL

(35 mod 10) + 1 = 6

startend

Lec 21.1811/26/2018 CS162 ©UCB Fall 2018

TCP Flow Control

• LastByteWritten: last byte written by sending process
• LastByteSent: last byte sent by sender to receiver
• LastByteAcked: last ack received by sender from receiver
• LastByteRcvd: last byte received by receiver from sender
• NextByteExpected: last in-sequence byte expected by receiver
• LastByteRead: last byte read by the receiving process

LastByteAcked(0) LastByteSent(0)

Sending Process

NextByteExpected(1)LastByteRcvd(0)

LastByteRead(0)

Receiving Process

LastByteWritten(0)

Lec 21.1911/26/2018 CS162 ©UCB Fall 2018

TCP Flow Control

Receiving Process

NextByteExpected LastByteRcvd

LastByteRead

• AdvertisedWindow: number of bytes TCP receiver can receive

• SenderWindow: number of bytes TCP sender can send

AdvertisedWindow = MaxRcvBuffer – (LastByteRcvd – LastByteRead)

SenderWindow = AdvertisedWindow – (LastByteSent – LastByteAcked)

LastByteAcked

Sending Process

LastByteWritten

LastByteSent

MaxRcvBufferMaxSendBuffer

Lec 21.2011/26/2018 CS162 ©UCB Fall 2018

TCP Flow Control

Receiving Process

NextByteExpected LastByteRcvd

LastByteRead

• Still true if receiver missed data….

• WriteWindow: number of bytes sending process can write

AdvertisedWindow = MaxRcvBuffer – (LastByteRcvd – LastByteRead)

WriteWindow = MaxSendBuffer – (LastByteWritten – LastByteAcked)

LastByteAcked

Sending Process

LastByteWritten

LastByteSent

MaxRcvBufferMaxSendBuffer

Lec 21.2111/26/2018 CS162 ©UCB Fall 2018

TCP Flow Control

• Sending app sends 350 bytes
• Recall:

– We assume IP only accepts packets no larger than 100 bytes
– MaxRcvBuf = 300 bytes, so initial Advertised Window = 300 byets

LastByteAcked(0) LastByteSent(0)

Sending Process

NextByteExpected(1)LastByteRcvd(0)

LastByteRead(0)

Receiving Process

LastByteWritten(350)
1, 350

Lec 21.2211/26/2018 CS162 ©UCB Fall 2018

1, 350

TCP Flow Control

LastByteAcked(0)

Sending Process

LastByteRead(0)

Receiving Process

LastByteWritten(350)
101, 350

LastByteSent(100)

1,
100

NextByteExpected(101)LastByteRcvd(100)

1,
100

Data[1,100]{[1,100]}
{[1,100]}

tim
eSender sends first packet (i.e., first 100 bytes)

and receiver gets the packet

Lec 21.2311/26/2018 CS162 ©UCB Fall 2018

TCP Flow Control

Data[1,100]{[1,100]}
{[1,100]}

Receiver sends ack for 1st packet
AdvWin = MaxRcvBuffer – (LastByteRcvd – LastByteRead)

= 300 – (100 – 0) = 200

1, 350

LastByteAcked(0)

Sending Process

LastByteRead(0)

Receiving Process

LastByteWritten(350)
101, 350

LastByteSent(100)

1,
100

NextByteExpected(101)LastByteRcvd(100)

1,
100

Lec 21.2411/26/2018 CS162 ©UCB Fall 2018

TCP Flow Control

LastByteAcked(0)

Sending Process

LastByteRead(0)

Receiving Process

LastByteWritten(350)

LastByteSent(200) NextByteExpected(201)LastByteRcvd(200)

101,
200

Sender sends 2nd packet (i.e., next 100 bytes)
and receiver gets the packet

Data[101,200]{[1,200]}
{[1,200]}

1,
100 101, 350101,

200 201, 350

Data[1,100]{[1,100]}
{[1,100]}

1,
100

Lec 21.2511/26/2018 CS162 ©UCB Fall 2018

TCP Flow Control

LastByteAcked(0)

Sending Process

LastByteRead(0)

Receiving Process

LastByteWritten(350)

LastByteSent(200) NextByteExpected(201)LastByteRcvd(200)

1, 200

Data[101,200]{[1,200]}
{[1,200]}

101, 3501, 200 201, 350

Data[1,100]{[1,100]}
{[1,100]}

Sender sends 2nd packet (i.e., next 100 bytes)
and receiver gets the packet

Lec 21.2611/26/2018 CS162 ©UCB Fall 2018

TCP Flow Control

LastByteAcked(0)

Sending Process

LastByteWritten(350)

LastByteSent(200)

Data[101,200]{[1,200]}
{[1,200]}

101, 3501, 200 201, 350

Data[1,100]{[1,100]}
{[1,100]}

Receiving TCP delivers first 100 bytes to
recienving process

LastByteRead(100)

Receiving Process

NextByteExpected(201)LastByteRcvd(200)

101,
200

1,
100

Lec 21.2711/26/2018 CS162 ©UCB Fall 2018

TCP Flow Control

LastByteAcked(0)

Sending Process

LastByteWritten(350)

LastByteSent(200)

Data[101,200]{[1,200]}
{[1,200]}

101, 3501, 200 201, 350

Data[1,100]{[1,100]}
{[1,100]}

Receiver sends ack for 2nd packet
AdvWin = MaxRcvBuffer – (LastByteRcvd – LastByteRead)

= 300 – (200 – 100) = 200

LastByteRead(100)

Receiving Process

NextByteExpected(201)LastByteRcvd(200)

101,
200

Lec 21.2811/26/2018 CS162 ©UCB Fall 2018

TCP Flow Control

LastByteAcked(0)

Sending Process

LastByteWritten(350)

LastByteSent(300)

Data[101,200]{[1,200]}
{[1,200]}

101, 3501, 200 201, 350

Data[1,100]{[1,100]}
{[1,100]}

Sender sends 3rd packet (i.e., next 100 bytes)
and the packet is lost

201,
300

{[1,300]} Data[201,300]

301,
350

LastByteRead(100)

Receiving Process

NextByteExpected(201)LastByteRcvd(200)

101,
200

Lec 21.2911/26/2018 CS162 ©UCB Fall 2018

TCP Flow Control

LastByteAcked(0)

Sending Process

LastByteWritten(350)

LastByteSent(300)

Data[101,200]{[1,200]}
{[1,200]}

101, 350201, 350

Data[1,100]{[1,100]}
{[1,100]}

Sender stops sending as window full
SndWin = AdvWin – (LastByteSent – LastByteAcked)

= 300 – (300 – 0) = 0

1,300

{[1,300]} Data[201,300]

301,
350

LastByteRead(100)

Receiving Process

NextByteExpected(201)LastByteRcvd(200)

101,
200

Lec 21.3011/26/2018 CS162 ©UCB Fall 2018

TCP Flow Control

LastByteAcked(0)

Sending Process

LastByteWritten(350)

LastByteSent(300)

101, 350201, 350

Data[1,100]{[1,100]}
{[1,100]}

• Sender gets ack for 1st packet
• AdWin = 200

1,300

{[1,300]} Data[201,300]

301,
350

Ack=101, AdvWin = 200

Data[101,200]{[1,200]}
{[1,200]}

LastByteRead(100)

Receiving Process

NextByteExpected(201)LastByteRcvd(200)

101,
200

Lec 21.3111/26/2018 CS162 ©UCB Fall 2018

TCP Flow Control

LastByteAcked(100)

Sending Process

LastByteWritten(350)

LastByteSent(300)

101, 350201, 350

Data[1,100]{[1,100]}
{[1,100]}

101,300

{[1,300]} Data[201,300]

301,
350

Ack=101, AdvWin = 200{101, 300}

Data[101,200]{[1,200]}
{[1,200]}

• Ack for 1st packet (ack indicates next byte
expected by receiver)

• Receiver no longer needs first 100 bytes

LastByteRead(100)

Receiving Process

NextByteExpected(201)LastByteRcvd(200)

101,
200

Lec 21.3211/26/2018 CS162 ©UCB Fall 2018

TCP Flow Control

LastByteAcked(100)

Sending Process

LastByteWritten(350)

LastByteSent(300)

101, 350201, 350

Data[1,100]{[1,100]}
{[1,100]}

101,300

{[1,300]} Data[201,300]

301,
350

Ack=101, AdvWin = 200{101, 300}

Data[101,200]{[1,200]}
{[1,200]}

Sender still cannot send as window full
SndWin = AdvWin – (LastByteSent – LastByteAcked)

= 200 – (300 – 100) = 0

LastByteRead(100)

Receiving Process

NextByteExpected(201)LastByteRcvd(200)

101,
200

Lec 21.3311/26/2018 CS162 ©UCB Fall 2018

TCP Flow Control

LastByteAcked(100)

Sending Process

LastByteRead(100)

Receiving Process

LastByteWritten(350)

LastByteSent(300) NextByteExpected(201)LastByteRcvd(200)

101,
200101, 350201, 350

Data[1,100]{[1,100]}
{[1,100]}

• Receiver gets ack for 2nd packet
• AdvWin = 200 bytes

101,300

{[1,300]} Data[201,300]

301,
350

{101, 300}

Data[101,200]{[1,200]}
{[101,200]}

Ack=201, AdvWin = 200{201, 300}

Lec 21.3411/26/2018 CS162 ©UCB Fall 2018

TCP Flow Control

LastByteAcked(200)

Sending Process

LastByteRead(100)

Receiving Process

LastByteWritten(350)

NextByteExpected(201)LastByteRcvd(200)

101, 350201, 350

Data[1,100]{[1,100]}
{[1,100]}

201,
300

{[1,300]} Data[201,300]

301,
350

{101, 300}

Data[101,200]{[1,200]}
{[101,200]}

Ack=201, AdvWin = 200{201, 300}

Sender can now send new data!
SndWin = AdvWin – (LasByteSent – LastByteAcked) = 100

101,
200

LastByteSent(300)

Lec 21.3511/26/2018 CS162 ©UCB Fall 2018

TCP Flow Control

LastByteAcked(200)

Sending Process

LastByteRead(100)

Receiving Process

LastByteWritten(350)

NextByteExpected(201)LastByteRcvd(350)

101, 350201, 350

Data[1,100]{[1,100]}
{[1,100]}

201,
300

{[1,300]} Data[201,300]

301,
350

{101, 300}

Data[101,200]{[1,200]}
{[101,200]}

101,
200

Data[301,350]{[201,350]}
{[101,200],[301,350]}

301,
350

LastByteSent(350)

301,
350

Lec 21.3611/26/2018 CS162 ©UCB Fall 2018

TCP Flow Control

LastByteAcked(200)

Sending Process

LastByteRead(100)

Receiving Process

LastByteWritten(350)

NextByteExpected(201)LastByteRcvd(350)

101, 350201, 350

Data[1,100]{[1,100]}
{[1,100]}

201,
300

{[1,300]} Data[201,300]

301,
350

{101, 300}

Data[101,200]{[1,200]}
{[101,200]}

101,
200

Data[301,350]{[201,350]}
{[101,200],[301,350]}

301,
350

LastByteSent(350)

301,
350

Ack=201, AdvWin = 50{201, 350}

Lec 21.3711/26/2018 CS162 ©UCB Fall 2018

TCP Flow Control

LastByteAcked(200)

Sending Process

LastByteRead(100)

Receiving Process

LastByteWritten(350)

NextByteExpected(201)LastByteRcvd(350)

101, 350201, 350201,
300

301,
350

101,
200

301,
350

LastByteSent(350)

301,
350

Data[301,350]{[201,350]}
{[101,200],[301,350]}

Ack=201, AdvWin = 50{201, 350}• Ack still specifies 201 (first byte out of sequence)
• AdvWin = 50, so can sender re-send 3rd packet?

Lec 21.3811/26/2018 CS162 ©UCB Fall 2018

TCP Flow Control

LastByteAcked(200)

Sending Process

LastByteRead(100)

Receiving Process

LastByteWritten(350)

NextByteExpected(201)LastByteRcvd(350)

101, 350201, 350201,
300

301,
350

101,
200

301,
350

LastByteSent(350)

301,
350

Data[301,350]{[201,350]}
{[101,200],[301,350]}

Ack=201, AdvWin = 50{201, 350}

• Ack still specifies 201 (first byte out of sequence)
• AdvWin = 50, so can sender re-send 3rd packet?

Lec 21.3911/26/2018 CS162 ©UCB Fall 2018

TCP Flow Control

LastByteAcked(200)

Sending Process

LastByteRead(100)

Receiving Process

LastByteWritten(350)

LastByteRcvd(350) NextByteExpected(351)

101, 350201, 350201,
300

301,
350

101,
200

Data[301,350]{[201,350]}
{[101,200],[301,350]}

301,
350

LastByteSent(350)

301,
350

Ack=201, AdvWin = 50{201, 350}

Yes! Sender can re-send 2nd packet since it’s in existing window
– won’t cause receiver window to grow

Data[201,300]{[201,350]}
{[101,350]}

201,
300

Lec 21.4011/26/2018 CS162 ©UCB Fall 2018

TCP Flow Control

LastByteAcked(200)

Sending Process

LastByteRead(100)

Receiving Process

LastByteWritten(350)

LastByteRcvd(350) NextByteExpected(351)

101, 350201, 350201,
300

301,
350 101, 350

Data[301,350]{[201,350]}
{[101,200],[301,350]}

301,
350

LastByteSent(350)

Ack=201, AdvWin = 50{201, 350}

Yes! Sender can re-send 2nd packet since it’s in existing window
– won’t cause receiver window to grow

Data[201,300]{[201,350]}
{[101,350]}

Lec 21.4111/26/2018 CS162 ©UCB Fall 2018

TCP Flow Control

LastByteAcked(200)

Sending Process

LastByteRead(100)

Receiving Process

LastByteWritten(350)

LastByteRcvd(350) NextByteExpected(351)

101, 350

Data[301,350]{[201,350]}
{[101,200],[301,350]}

LastByteSent(350)

Ack=201, AdvWin = 50{201, 350}

• Sender gets 3rd packet and sends Ack for 351
• AdvWin = 50

Data[201,300]{[201,350]}
{[101,350]}

Ack=351, AdvWin = 50{}

201,
300

301,
350

Lec 21.4211/26/2018 CS162 ©UCB Fall 2018

TCP Flow Control

LastByteAcked(350)

Sending Process

LastByteRead(100)

Receiving Process

LastByteWritten(350)

LastByteRcvd(350) NextByteExpected(351)

101, 350

Data[301,350]{[201,350]}
{[101,200],[301,350]}

LastByteSent(350)

Ack=201, AdvWin = 50{201, 350}

Sender DONE with sending all bytes!

Data[201,300]{[201,350]}
{[101,350]}

Ack=351, AdvWin = 50{}

Lec 21.4311/26/2018 CS162 ©UCB Fall 2018

Discussion
• Why not have a huge buffer at the receiver (memory is

cheap!)?

• Sending window (SndWnd) also depends on network
congestion

– Congestion control: ensure that a fast receiver doesn’t
overwhelm a router in the network (discussed in detail in
cs168)

• In practice there is another set of buffers in the protocol
stack, at the link layer (i.e., Network Interface Card)

Lec 21.4411/26/2018 CS162 ©UCB Fall 2018

Summary

• E2E argument encourages us to keep IP simple
– If higher layer can implement functionality correctly, implement it in a lower

layer only if
» it improves the performance significantly for application that need that

functionality, and
» it does not impose burden on applications that do not require that

functionality

• Flow control
– Avoid the sender over-flowing the receiver buffer
– Receiver only reads in-sequence data, and acks with the next sequence

number is waiting for
– Sender never sends more data than the receiver can hold in its buffer

Lec 21.4511/26/2018 CS162 ©UCB Fall 2018

THANKS, AND GOOD LUCK!

