
CS 162 Project 2: User Programs

Initial Design Document Due:
Wednesday, October 17, 2018

Code Due:
Friday, November 2, 2018
Final Report Due:

Monday, November 5, 2018

Contents

1 Your task 3
1.1 Task 1: Argument Passing . 3
1.2 Task 2: Process Control Syscalls . 3
1.3 Task 3: File Operation Syscalls . 3

2 Deliverables 4
2.1 Design Document (Due 10/17) and Design Review . 4

2.1.1 Design Document Guidelines . 4
2.1.2 Design Document Additional Questions . 5
2.1.3 GDB Questions . 5
2.1.4 Design Review . 6
2.1.5 Grading . 6

2.2 Code (Due 11/02) . 7
2.2.1 Student Testing Code (Due 11/02) . 7

2.3 Student Testing Report (Due 11/05) . 7
2.4 Final Report (Due 11/05) and Code Quality . 8

3 Reference 9
3.1 Pintos . 9

3.1.1 Getting Started . 9
3.1.2 Source Files . 9
3.1.3 Using the File System . 10
3.1.4 Formatting and Using the Filesystem . 10
3.1.5 How User Programs Work . 11
3.1.6 Virtual Memory Layout . 11
3.1.7 Accessing User Memory . 12
3.1.8 80x86 Calling Convention . 13
3.1.9 Program Startup Details . 14
3.1.10 Adding new tests to Pintos . 15

3.2 System Calls . 16
3.2.1 System Call Overview . 16
3.2.2 Process System Calls . 16

1

CS 162 Fall 2018 Project 2: User Programs

3.2.3 File System Calls . 17
3.3 FAQ . 18

3.3.1 Argument Passing FAQ . 20
3.3.2 System Calls FAQ . 20

2

CS 162 Fall 2018 Project 2: User Programs

1 Your task

In this project, you will extend Pintos’s support for user programs. The skeleton code for Pintos is
already able to load and start user programs, but the programs cannot read command-line arguments
or make system calls.

1.1 Task 1: Argument Passing

The “process_execute(char *file_name)” function is used to create new user-level processes in Pin-
tos. Currently, it does not support command-line arguments. You must implement argument passing,
so that calling “process_execute("ls -ahl")” will provide the 2 arguments, ["ls", "-ahl"], to the
user program using argc and argv.

All of our Pintos test programs start by printing out their own name (e.g. argv[0]). Since argument
passing has not yet been implemented, all of these programs will crash when they access argv[0]. Until
you implement argument passing, none of the user programs will work.

1.2 Task 2: Process Control Syscalls

Pintos currently only supports one syscall: exit. You will add support for the following new syscalls:
halt, exec, wait, and practice. Each of these syscalls has a corresponding function inside the user-level
library, lib/user/syscall.c, which prepares the syscall arguments and handles the transfer to kernel
mode. The kernel’s syscall handlers are located in userprog/syscall.c.

The halt syscall will shutdown the system. The exec syscall will start a new program with
process_execute(). (There is no fork syscall in Pintos. The Pintos exec syscall is similar to calling
Linux’s fork syscall and then Linux’s execve syscall in the child process immediately afterward.) The
wait syscall will wait for a specific child process to exit. The practice syscall just adds 1 to its first
argument, and returns the result (to give you practice writing a syscall handler).

To implement syscalls, you first need a way to safely read and write memory that’s in user process’s
virtual address space. The syscall arguments are located on the user process’s stack, right above the user
process stack pointer. If the stack pointer is invalid when the user program makes a syscall, the kernel
cannot crash while trying to dereference an invalid or null pointer. Additionally, some syscall arguments
are pointers to buffers inside the user process’s address space. Those buffer pointer could be invalid as
well.

You will need to gracefully handle cases where a syscall cannot be completed, because of invalid
memory access. These kinds of memory errors include null pointers, invalid pointers (which point to
unmapped memory locations), or pointers to the kernel’s virtual address space. Beware: It may be the
case that a 4-byte memory region (like a 32-bit integer) consists of 2 bytes of valid memory and 2 bytes
of invalid memory, if the memory lies on a page boundary. You should handle these cases by terminating
the user process. We recommend testing this part of your code, before implementing any other system
call functionality. See 3.1.7 Accessing User Memory for more information.

1.3 Task 3: File Operation Syscalls

In addition to the process control syscalls, you will also need to implement these file operation syscalls:
create, remove, open, filesize, read, write, seek, tell, and close. Pintos already contains a basic
filesystem. Your implementation of these syscalls will simply call the appropriate functions in the file
system library. You will not need to implement any of these file operations yourself.

The Pintos filesystem is not thread-safe. You must make sure that your file operation syscalls
do not call multiple filesystem functions concurrently. In Project 3, you will add more sophisticated
synchronization to the Pintos filesystem, but for this project, you are permitted to use a global lock on
filesystem operations, to ensure thread safety. We recommend that you avoid modifying the filesys/

directory in this project.

3

CS 162 Fall 2018 Project 2: User Programs

While a user process is running, you must ensure that nobody can modify its executable on disk. The
“rox” tests ensure that you deny writes to current-running program files. The functions file_deny_write()
and file_allow_write() can assist with this feature.

Note: Your final code for Project 2 will be used as a starting point for Project 3. The tests for
Project 3 depend on some of the same syscalls that you are implementing for this project. You should
keep this in mind while designing your implementation for this project.

2 Deliverables

Your project grade will be made up of 4 components:

• 20% Design Document and Design Review

• 55% Code

• 15% Student Testing – This is a new component of your project grade (see explanation below).

• 10% Final Report and Code Quality

2.1 Design Document (Due 10/17) and Design Review

Before you start writing any code for your project, you should create an implementation plan for each
feature and convince yourself that your design is correct. For this project, you must submit a design
document and attend a design review with your project TA.

2.1.1 Design Document Guidelines

Write your design document inside the doc/project2.md file, which has already been placed in your
group’s GitHub repository. You must use GitHub Flavored Markdown1 to format your design document.
You can preview your design document on GitHub’s web interface by going to the following address:
(replace group0 with your group number)

https://github.com/Berkeley-CS162/group0/blob/master/doc/project2.md

For each of the first 3 tasks of this project, you must explain the following 4 aspects of your
proposed design. We suggest you create a section for each of the 3 project parts. Then, create subsections
for each of these 4 aspects.

1. Data structures and functions – Write down any struct definitions, global (or static) variables,
typedefs, or enumerations that you will be adding or modifying (if it already exists). These
definitions should be written with the C programming language, not with pseudocode. Include
a brief explanation the purpose of each modification. Your explanations should be as concise as
possible. Leave the full explanation to the following sections.

2. Algorithms – This is where you tell us how your code will work. Your description should be at a
level below the high level description of requirements given in the assignment. We have read the
project spec too, so it is unnecessary to repeat or rephrase what is stated here. On the other hand,
your description should be at a level above the code itself. Don’t give a line-by-line run-down of
what code you plan to write. Instead, you should try to convince us that your design satisfies all
the requirements, including any uncommon edge cases. This section should be similar in style
and format to the design document you submitted for Project 1. We expect you to read through
the Pintos source code when preparing your design document, and your design document should
refer to the Pintos source when necessary to clarify your implementation.

1https://help.github.com/articles/basic-writing-and-formatting-syntax/

4

https://help.github.com/articles/basic-writing-and-formatting-syntax/

CS 162 Fall 2018 Project 2: User Programs

3. Synchronization – This section should list all resources that are shared across threads. For each
case, enumerate how the resources are accessed (e.g., from inside of the scheduler, in an interrupt
context, etc), and describe the strategy you plan to use to ensure that these resources are shared
and modified safely. For each resource, demonstrate that your design ensures correct behavior and
avoids deadlock. In general, the best synchronization strategies are simple and easily verifiable.
If your synchronization strategy is difficult to explain, this is a good indication that you should
simplify your strategy. Please discuss the time/memory costs of your synchronization approach,
and whether your strategy will significantly limit the parallelism of the kernel. When discussing the
parallelism allowed by your approach, explain how frequently threads will contend on the shared
resources, and any limits on the number of threads that can enter independent critical sections at
a single time.

4. Rationale – Tell us why your design is better than the alternatives that you considered, or
point out any shortcomings it may have. You should think about whether your design is easy to
conceptualize, how much coding it will require, the time/space complexity of your algorithms, and
how easy/difficult it would be to extend your design to accommodate additional features.

2.1.2 Design Document Additional Questions

You must also answer these additional questions in your design document:

1. Take a look at the Project 2 test suite in pintos/src/tests/userprog. Some of the test cases
will intentionally provide invalid pointers as syscall arguments, in order to test whether your
implementation safely handles the reading and writing of user process memory. Please identify a
test case that uses an invalid stack pointer ($esp) when making a syscall. Provide the name of the
test and explain how the test works. (Your explanation should be very specific: use line numbers
and the actual names of variables when explaining the test case.)

2. Please identify a test case that uses a valid stack pointer when making a syscall, but the stack
pointer is too close to a page boundary, so some of the syscall arguments are located in invalid
memory. (Your implementation should kill the user process in this case.) Provide the name of the
test and explain how the test works. (Your explanation should be very specific: use line numbers
and the actual names of variables when explaining the test case.)

3. Identify one part of the project requirements which is not fully tested by the existing test
suite. Explain what kind of test needs to be added to the test suite, in order to provide coverage
for that part of the project. (There are multiple good answers for this question.)

4. Answer the GDB questions below.

2.1.3 GDB Questions

To be sucessful at Pintos, a strong familiarity with GDB is extrememly helpful. As such, in this design
doc, we will ask some questions about pintos which can be answered with GDB. Please make sure that
each member of your group does this section of the design doc. (Feel free to work together of course!)

We will use GDB on the first test of project 2 – args-none. To get started please first build project
2 by running make check in the src/userprog directory. Then start Pintos with the args-none test
by doing

pintos --gdb --filesys-size=2 -p build/tests/userprog/args-none -a args-none \

-- -q -f run args-none

Finally, start GDB (pintos-gdb build/kernel.o) and attach it to the Pintos process (debugpintos).
If any of these instructions are not clear, please take another look at the GDB section of Project 1’s
spec.

5

CS 162 Fall 2018 Project 2: User Programs

The questions you should answer in your design doc are the following.

1. Set a break point at process_execute and continue to that point. What is the name and address
of the thread running this function? What other threads are present in pintos at this time? Copy
their struct threads. (Hint: for the last part dumplist &all_list thread allelem may be
useful.)

2. What is the backtrace for the current thread? Copy the backtrace from gdb as your answer and
also copy down the line of c code corresponding to each function call.

3. Set a breakpoint at start_process and continue to that point. What is the name and address of
the thread running this function? What other threads are present in pintos at this time? Copy
their struct threads.

4. Where is the thread running start_process created? Copy down this line of code.

5. Continue one more time. The userprogram should cause a page fault and thus cause the page fault
handler to be executed. It’ll look something like

[Thread <main>] #1 stopped.

pintos-debug: a page fault exception occurred in user mode

pintos-debug: hit ’c’ to continue, or ’s’ to step to intr_handler

0xc0021ab7 in intr0e_stub ()

Please find out what line of our user program caused the page fault. Don’t worry if it’s just an
hex address. (Hint: btpagefault may be useful)

6. The reason why btpagefault returns an hex address is because pintos-gdb build/kernel.o

only loads in the symbols from the kernel. The instruction that caused the page fault is in our
userprogram so we have to load these symbols into gdb. To do this use

loadusersymbols build/tests/userprog/args-none

. Now do btpagefault again and copy down the results.

7. Why did our user program page fault on this line?

2.1.4 Design Review

You will schedule a 20-25 minute design review with your project TA. During the design review, your
TA will ask you questions about your design for the project. You should be prepared to defend your
design and answer any clarifying questions your TA may have about your design document. The design
review is also a good opportunity to get to know your TA for those participation points.

2.1.5 Grading

The design document and design review will be graded together. Your score will reflect how convincing
your design is, based on your explanation in your design document and your answers during the design
review. You must attend a design review in order to get these points. We will try to accommodate any
time conflicts, but you should let your TA know as soon as possible.

6

CS 162 Fall 2018 Project 2: User Programs

2.2 Code (Due 11/02)

The code section of your grade will be determined by your autograder score. Pintos comes with a test
suite that you can run locally on your VM. We run the same tests on the autograder. The results of
these tests will determine your code score.

You can check your current grade for the code portion at any time by logging in to the course
autograder. Autograder results will also be emailed to you.

2.2.1 Student Testing Code (Due 11/02)

Pintos already contains a test suite for Project 2, but not all of the parts of this project have complete
test coverage. Your task is to submit 2 new test cases, which exercise functionality that is
not covered by existing tests. We will not tell you what features to write tests for. You will be
responsible for identifying which features of this project would benefit most from additional tests. Make
sure your own project implementation passes the tests that you write. You can pick any appropriate
name for your test, but beware that test names should be no longer than 15 characters. Once you
finish writing your test cases, make sure that they get executed when you run “make check” in the
pintos/src/userprog/ directory.

2.3 Student Testing Report (Due 11/05)

While the tests themselves must be submitted with the rest of your code, you will also need to prepare
a Student Testing Report, which will help us grade your test cases. Place your Student Testing Report
inside reports/project2.md, alongside your final report.

Make sure your Student Testing Report contains the following:

• For each of the 2 test cases you write:

– Provide a description of the feature your test case is supposed to test.

– Provide an overview of how the mechanics of your test case work, as well as a qualitative
description of the expected output.

– Provide the output of your own Pintos kernel when you run the test case. Please copy the
full raw output file from userprog/build/tests/userprog/your-test-1.output as well as
the raw results from userprog/build/tests/userprog/your-test-1.result.

– Identify two non-trivial potential kernel bugs, and explain how they would have affected your
output of this test case. You should express these in this form: “If your kernel did X instead
of Y, then the test case would output Z instead.”. You should identify two different bugs per
test case, but you can use the same bug for both of your two test cases. These bugs should
be related to your test case (e.g. “If your kernel had a syntax error, then this test case would
not run.” does not count).

• Tell us about your experience writing tests for Pintos. What can be improved about the Pintos
testing system? (There’s a lot of room for improvement.) What did you learn from writing test
cases?

We will grade your test cases based on effort. If all of the above components are present in your
Student Testing Report and your test cases are satisfactory, you will get full credit on this part of the
project.

7

CS 162 Fall 2018 Project 2: User Programs

2.4 Final Report (Due 11/05) and Code Quality

After you complete the code for your project, you will submit a final report. Write your final report
inside the reports/project2.md file, which has already been placed in your group’s GitHub repository.
Please include the following in your final report:

• The changes you made since your initial design document and why you made them (feel free to
re-iterate what you discussed with your TA in the design review)

• A reflection on the project – what exactly did each member do? What went well, and what could
be improved?

• Your Student Testing Report (see the previous section for more details)

You will also be graded on the quality of your code. This will be based on many factors:

• Does your code exhibit any major memory safety problems (especially regarding C strings), memory
leaks, poor error handling, or race conditions?

• Did you use consistent code style? Your code should blend in with the existing Pintos code. Check
your use of indentation, your spacing, and your naming conventions.

• Is your code simple and easy to understand?

• If you have very complex sections of code in your solution, did you add enough comments to explain
them?

• Did you leave commented-out code in your final submission?

• Did you copy-paste code instead of creating reusable functions?

• Did you re-implement linked list algorithms instead of using the provided list manipulation

• Are your lines of source code excessively long? (more than 100 characters)

• Is your Git commit history full of binary files? (don’t commit object files or log files, unless you
actually intend to)

8

CS 162 Fall 2018 Project 2: User Programs

3 Reference

3.1 Pintos

User programs are written under the illusion that they have the entire machine, which means that the
operating system must manage/protect machine resources correctly to maintain this illusion for multiple
processes. In Pintos, more than one process can run at a time, but each process is single-threaded
(multithreaded processes are not supported).

3.1.1 Getting Started

Log in to the Vagrant Virtual Machine that you set up in hw0. You should already have your Pintos
code from Project 1 in ~/code/group on your VM. You may start Project 2 using your Project 1 code.
But you may also start over from the skeleton code if you wish.

If you would like to start over from the skeleton code, please run these commands on your VM:

$ cd ~/code/group/

$ git checkout 81c04a231523daaa082204b53bd8d3bc5f4d534f -- pintos/

$ git commit -m "Revert changes to pintos/ from Project 1"

$ git push group master

Make sure your design document and final report for Project 1 is still accessible from
the GitHub website. We will be looking for those documents, so if you do not have them, we might
mistakenly think you didn’t turn them in. Also, please do not force push and please do not delete
your commits from Project 1. You should know that orphan commits are still accessible on GitHub, and
we have a history of the commit hashes you’ve pushed to the autograder, but we will not enjoy digging
up that information if we need it.

We recommend that you use Git to tag your final Project 1 code, for your own benefit.
Once you have made some progress on your project, you can push your code to the autograder

by pushing to “group master”. You don’t have to do this right now, because you haven’t made any
progress yet.

$ git commit -m "Added feature X to Pintos"

$ git push group master

To compile Pintos and run the Project 2 tests:

$ cd ~/code/group/pintos/src/userprog

$ make

$ make check

The last command should run the Pintos test suite. These are the same tests that run on the
autograder. By the end of the project, your code should pass all of the tests.

3.1.2 Source Files

For this project, you will need to modify some of the same files that you changed in Project 1. You may
also need to modify these additional files:

process.c Loads ELF binaries and starts processes.

pagedir.c Manages the page tables. You probably won’t need to modify this code, but you may want
to call some of these functions.

userprog/syscall.c This is a skeleton system call handler. Currently, it only supports the exit syscall.

9

CS 162 Fall 2018 Project 2: User Programs

lib/user/syscall.c Provides library functions for user programs to invoke system calls from a C pro-
gram. Each function uses inline assembly code to prepare the syscall arguments and invoke the
system call. We don’t expect you to understand this assembly code, but we do expect you to
understand the calling conventions used for syscalls (also in Reference).

lib/syscall-nr.h This file defines the syscall numbers for each syscall.

exception.c Handle exceptions. Currently all exceptions simply print a message and terminate the
process. Some, but not all, solutions to Project 2 involve modifying page fault() in this file.

3.1.3 Using the File System

You will need to use the Pintos filesystem for this project, in order to load user programs from disk
and implement file operation syscalls. You will not need to modify the filesystem in this project.
The provided filesystem already contains all the functionality needed to support the required syscalls.
(We recommend that you do not change the filesystem for this project.) However, you will need to read
some of the filesystem code, especially filesys.h and file.h, to understand how to use the file system. You
should beware of these limitations of the Pintos filesystem:

• No internal synchronization. Concurrent accesses will interfere with one another. You should use
synchronization to ensure that only one process at a time is executing file system code.

• File size is fixed at creation time. The root directory is represented as a file, so the number of files
that may be created is also limited.

• File data is allocated as a single extent. In other words, data in a single file must occupy a
contiguous range of sectors on disk. External fragmentation can therefore become a serious problem
as a file system is used over time.

• No subdirectories.

• File names are limited to 14 characters.

• A system crash mid-operation may corrupt the disk in a way that cannot be repaired automatically.
There is no file system repair tool anyway.

• When a file is removed (deleted), its blocks are not deallocated until all processes have closed all
file descriptors pointing to it. Therefore, a deleted file may still be accessible by processes that
have it open.

3.1.4 Formatting and Using the Filesystem

During the development process, you may need to be able to create a simulated disk with a file system
partition. The pintos-mkdisk program provides this functionality. From the userprog/build directory,
execute pintos-mkdisk filesys.dsk

--filesys-size=2. This command creates a simulated disk named filesys.dsk that contains a 2 MB
Pintos file system partition. Then format the file system partition by passing -f -q on the kernel’s
command line: pintos -f -q. The -f option causes the file system to be formatted, and -q causes
Pintos to exit as soon as the format is done.

You’ll need a way to copy files in and out of the simulated file system. The Pintos -p (“put”) and -g

(“get”) options do this. To copy file into the Pintos file system, use the command pintos -p file -- -q.
(The -- is needed because -p is for the Pintos script, not for the simulated kernel.) To copy it to the
Pintos file system under the name newname, add -a newname: pintos -p file -a newname -- -q.
The commands for copying files out of a VM are similar, but substitute -g for -p.

10

CS 162 Fall 2018 Project 2: User Programs

Here’s a summary of how to create a disk with a file system partition, format the file system, copy
the echo program into the new disk, and then run echo, passing argument x. (Argument passing won’t
work until you implemented it.) It assumes that you’ve already built the examples in examples and that
the current directory is userprog/build:

pintos-mkdisk filesys.dsk --filesys-size=2

pintos -f -q

pintos -p ../../examples/echo -a echo -- -q

pintos -q run ’echo x’

The three final steps can actually be combined into a single command:

pintos-mkdisk filesys.dsk --filesys-size=2

pintos -p ../../examples/echo -a echo -- -f -q run ’echo x’

If you don’t want to keep the file system disk around for later use or inspection, you can even combine
all four steps into a single command. The --filesys-size=n option creates a temporary file system
partition approximately n megabytes in size just for the duration of the Pintos run. The Pintos automatic
test suite makes extensive use of this syntax:

pintos --filesys-size=2 -p ../../examples/echo -a echo -- -f -q run ’echo x’

You can delete a file from the Pintos file system using the rm file kernel action, e.g. pintos -q rm file.
Also, ls lists the files in the file system and cat file prints a file’s contents to the display.

3.1.5 How User Programs Work

Pintos can run normal C programs, as long as they fit into memory and use only the system calls you
implement. Notably, malloc() cannot be implemented because none of the system calls required for this
project allow for memory allocation. Pintos also can’t run programs that use floating point operations,
since the kernel doesn’t save and restore the processor’s floating-point unit when switching threads.

The src/examples directory contains a few sample user programs. The Makefile in this directory
compiles the provided examples, and you can edit it to compile your own programs as well. Pintos can
load ELF executables with the loader provided for you in userprog/process.c.

Until you copy a test program to the simulated file system (see Using the File System), Pintos
will be unable to do useful work. You should create a clean reference file system disk and copy that
over whenever you trash your filesys.dsk beyond a useful state, which may happen occasionally while
debugging.

3.1.6 Virtual Memory Layout

Virtual memory in Pintos is divided into two regions: user virtual memory and kernel virtual mem-
ory. User virtual memory ranges from virtual address 0 up to PHYS BASE, which is defined in
threads/vaddr.h and defaults to 0xC0000000 (3 GB). Kernel virtual memory occupies the rest of the
virtual address space, from PHYS BASE up to 4 GB.

User virtual memory is per-process. When the kernel switches from one process to another, it
also switches user virtual address spaces by changing the processor’s page directory base register (see
pagedir_activate() in userprog/pagedir.c). struct thread contains a pointer to a process’s page table.

Kernel virtual memory is global. It is always mapped the same way, regardless of what user process
or kernel thread is running. In Pintos, kernel virtual memory is mapped one-to-one to physical memory,
starting at PHYS BASE. That is, virtual address PHYS BASE accesses physical address 0, virtual
address PHYS BASE + 0x1234 accesses physical address 0x1234, and so on up to the size of the machine’s
physical memory.

11

CS 162 Fall 2018 Project 2: User Programs

A user program can only access its own user virtual memory. An attempt to access kernel virtual
memory causes a page fault, handled by page_fault() in userprog/exception.c, and the process will be
terminated. Kernel threads can access both kernel virtual memory and, if a user process is running, the
user virtual memory of the running process. However, even in the kernel, an attempt to access memory
at an unmapped user virtual address will cause a page fault.

Typical Memory Layout Conceptually, each process is free to lay out its own user virtual memory
however it chooses. In practice, user virtual memory is laid out like this:

PHYS_BASE +----------------------------------+

| user stack |

| | |

| | |

| V |

| grows downward |

| |

| |

| |

| |

| grows upward |

| ^ |

| | |

| | |

+----------------------------------+

| uninitialized data segment (BSS) |

+----------------------------------+

| initialized data segment |

+----------------------------------+

| code segment |

0x08048000 +----------------------------------+

| |

| |

| |

| |

| |

0 +----------------------------------+

3.1.7 Accessing User Memory

As part of a system call, the kernel must often access memory through pointers provided by a user
program. The kernel must be very careful about doing so, because the user can pass a null pointer, a
pointer to unmapped virtual memory, or a pointer to kernel virtual address space (above PHYS BASE).
All of these types of invalid pointers must be rejected without harm to the kernel or other running
processes, by terminating the offending process and freeing its resources.

There are at least two reasonable ways to do this correctly:

• verify the validity of a user-provided pointer, then dereference it. If you choose this route, you’ll
want to look at the functions in userprog/pagedir.c and in threads/vaddr.h. This is the simplest
way to handle user memory access.

• check only that a user pointer points below PHYS BASE, then dereference it. An invalid user
pointer will cause a “page fault” that you can handle by modifying the code for page_fault() in

12

CS 162 Fall 2018 Project 2: User Programs

userprog/exception.c. This technique is normally faster because it takes advantage of the proces-
sor’s MMU, so it tends to be used in real kernels (including Linux).

In either case, you need to make sure not to “leak” resources. For example, suppose that your system
call has acquired a lock or allocated memory with malloc(). If you encounter an invalid user pointer
afterward, you must still be sure to release the lock or free the page of memory. If you choose to verify
user pointers before dereferencing them, this should be straightforward. It’s more difficult to handle if
an invalid pointer causes a page fault, because there’s no way to return an error code from a memory
access. Therefore, for those who want to try the latter technique, we’ll provide a little bit of helpful
code:

/* Reads a byte at user virtual address UADDR.

UADDR must be below PHYS_BASE.

Returns the byte value if successful, -1 if a segfault

occurred. */

static int

get_user (const uint8_t *uaddr)

{

int result;

asm ("movl $1f, %0; movzbl %1, %0; 1:"

: "=&a" (result) : "m" (*uaddr));

return result;

}

/* Writes BYTE to user address UDST.

UDST must be below PHYS_BASE.

Returns true if successful, false if a segfault occurred. */

static bool

put_user (uint8_t *udst, uint8_t byte)

{

int error_code;

asm ("movl $1f, %0; movb %b2, %1; 1:"

: "=&a" (error_code), "=m" (*udst) : "q" (byte));

return error_code != -1;

}

Each of these functions assumes that the user address has already been verified to be below PHYS BASE.
They also assume that you’ve modified page_fault() so that a page fault in the kernel merely sets %eax
to 0xffffffff and copies its former value into eip.

3.1.8 80x86 Calling Convention

This section summarizes important points of the convention used for normal function calls on 32-bit
80x86 implementations of Unix. Some details are omitted for brevity.

The calling convention works like this:

1. The caller pushes each of the function’s arguments on the stack one by one, normally using the
PUSH assembly language instruction. Arguments are pushed in right-to-left order.

The stack grows downward: each push decrements the stack pointer, then stores into the location
it now points to, like the C expression *--sp = value.

13

CS 162 Fall 2018 Project 2: User Programs

2. The caller pushes the address of its next instruction (the return address) on the stack and jumps
to the first instruction of the callee. A single 80x86 instruction, CALL, does both.

3. The callee executes. When it takes control, the stack pointer points to the return address, the first
argument is just above it, the second argument is just above the first argument, and so on.

4. If the callee has a return value, it stores it into register EAX.

5. The callee returns by popping the return address from the stack and jumping to the location it
specifies, using the 80x86 RET instruction.

6. The caller pops the arguments off the stack.

Consider a function f() that takes three int arguments. This diagram shows a sample stack frame
as seen by the callee at the beginning of step 3 above, supposing that f() is invoked as f(1, 2, 3). The
initial stack address is arbitrary:

+----------------+

0xbffffe7c | 3 |

0xbffffe78 | 2 |

0xbffffe74 | 1 |

stack pointer --> 0xbffffe70 | return address |

+----------------+

3.1.9 Program Startup Details

The Pintos C library for user programs designates _start(), in lib/user/entry.c, as the entry point for
user programs. This function is a wrapper around main() that calls exit() if main() returns:

void

_start (int argc, char *argv[])

{

exit (main (argc, argv));

}

The kernel must put the arguments for the initial function on the stack before it allows the user
program to begin executing. The arguments are passed in the same way as the normal calling convention
(see section 80x86 Calling Convention).

Consider how to handle arguments for the following example command: /bin/ls -l foo bar. First,
break the command into words: /bin/ls, -l, foo, bar. Place the words at the top of the stack. Order
doesn’t matter, because they will be referenced through pointers.

Then, push the address of each string plus a null pointer sentinel, on the stack, in right-to-left order.
These are the elements of argv. The null pointer sentinel ensures that argv[argc] is a null pointer, as
required by the C standard. The order ensures that argv[0] is at the lowest virtual address. Word-
aligned accesses are faster than unaligned accesses, so for best performance round the stack pointer down
to a multiple of 4 before the first push.

Then, push argv (the address of argv[0]) and argc, in that order. Finally, push a fake “return
address”: although the entry function will never return, its stack frame must have the same structure
as any other.

The table below shows the state of the stack and the relevant registers right before the beginning of
the user program, assuming PHYS BASE is 0xc0000000:

14

CS 162 Fall 2018 Project 2: User Programs

Address Name Data Type
0xbffffffc argv[3][...] bar\0 char[4]

0xbffffff8 argv[2][...] foo\0 char[4]

0xbffffff5 argv[1][...] -l\0 char[3]

0xbfffffed argv[0][...] /bin/ls\0 char[8]

0xbfffffec word-align 0 uint8_t

0xbfffffe8 argv[4] 0 char *

0xbfffffe4 argv[3] 0xbffffffc char *

0xbfffffe0 argv[2] 0xbffffff8 char *

0xbfffffdc argv[1] 0xbffffff5 char *

0xbfffffd8 argv[0] 0xbfffffed char *

0xbfffffd4 argv 0xbfffffd8 char **

0xbfffffd0 argc 4 int

0xbfffffcc return address 0 void (*) ()

In this example, the stack pointer would be initialized to 0xbfffffcc.
As shown above, your code should start the stack at the very top of the user virtual address space,

in the page just below virtual address PHYS_BASE (defined in threads/vaddr.h).
You may find the non-standard hex_dump() function, declared in <stdio.h>, useful for debugging

your argument passing code. Here’s what it would show in the above example:

bfffffc0 00 00 00 00 ||

bfffffd0 04 00 00 00 d8 ff ff bf-ed ff ff bf f5 ff ff bf |................|

bfffffe0 f8 ff ff bf fc ff ff bf-00 00 00 00 00 2f 62 69 |............./bi|

bffffff0 6e 2f 6c 73 00 2d 6c 00-66 6f 6f 00 62 61 72 00 |n/ls.-l.foo.bar.|

3.1.10 Adding new tests to Pintos

Pintos also comes with its own testing framework that allows you to design and run your own tests.
For this project, you will also be required to extend the current suite of tests with a few tests of your
own. All of the filesystem and userprog tests are “user program” tests, which means that they are only
allowed to interact with the kernel via system calls.

Some things to keep in mind while writing your test cases:

• User programs have access to a limited subset of the C standard library. You can find the user
library in lib/.

• User programs cannot directly access variables in the kernel.

• User programs do not have access to malloc, since brk and sbrk are not implemented. User
programs also have a limited stack size. If you need a large buffer, make it a static global variable.

• Pintos starts with 4MB of memory and the file system block device is 2MB by default. Don’t use
data structures or files that exceed these sizes.

• Your test should use msg() instead of printf() (they have the same function signature).

You can add new test cases to the userprog suite by modifying these files:

tests/userprog/Make.tests Entry point for the userprog test suite. You need to add the name of
your test to the tests/userprog_TESTS variable, in order for the test suite to find it. Additionally,
you will need to define a variable named tests/userprog/my-test-1_SRC which contains all the
files that need to be compiled into your test (see the other test definitions for examples). You can
add other source files and resources to your tests, if you wish.

15

CS 162 Fall 2018 Project 2: User Programs

tests/userprog/my-test-1.c This is the test code for your test. Your test should define a function
called test_main, which contains a user-level program. This is the main body of your test case,
which should make syscalls and print output. Use the msg() function instead of printf.

tests/userprog/my-test-1.ck Every test needs a .ck file, which is a Perl script that checks the output
of the test program. If you are not familiar with Perl, don’t worry! You can probably get through
this part with some educated guessing. Your check script should use the subroutines that are
defined in tests/tests.pm. At the end, call pass to print out the “PASS” message, which tells
Pintos test driver that your test passed.

3.2 System Calls

3.2.1 System Call Overview

The first project already dealt with one way that the operating system can regain control from a user
program: interrupts from timers and I/O devices. These are “external” interrupts, because they are
caused by entities outside the CPU. The operating system also deals with software exceptions, which
are events that occur in program code. These can be errors such as a page fault or division by zero.
Exceptions are also the means by which a user program can request services (“system calls”) from the
operating system.

In the 80x86 architecture, the int instruction is the most commonly used means for invoking system
calls. This instruction is handled in the same way as other software exceptions. In Pintos, user programs
invoke int $0x30 to make a system call. The system call number and any additional arguments are
expected to be pushed on the stack in the normal fashion before invoking the interrupt (see section
80x86 Calling Convention).

Thus, when the system call handler syscall_handler() gets control, the system call number is in
the 32-bit word at the caller’s stack pointer, the first argument is in the 32-bit word at the next higher
address, and so on. The caller’s stack pointer is accessible to syscall_handler() as the esp member of
the struct intr_frame passed to it. (struct intr_frame is on the kernel stack.)

The 80x86 convention for function return values is to place them in the EAX register. System calls
that return a value can do so by modifying the eax member of struct intr_frame.

You should try to avoid writing large amounts of repetitive code for implementing system calls. Each
system call argument, whether an integer or a pointer, takes up 4 bytes on the stack. You should be
able to take advantage of this to avoid writing much near-identical code for retrieving each system call’s
arguments from the stack.

3.2.2 Process System Calls

For task 2, you will need to implement the following system calls:

System Call: int practice (int i) A “fake” system call that doesn’t exist in any modern operating
system. You will implement this to get familiar with the system call interface. This system call
increments the passed in integer argument by 1 and returns it to the user.

System Call: void halt (void) Terminates Pintos by calling shutdown_power_off() (declared in
devices/shutdown.h). This should be seldom used, because you lose some information about pos-
sible deadlock situations, etc.

System Call: void exit (int status) Terminates the current user program, returning status to the
kernel. If the process’s parent waits for it (see below), this is the status that will be returned.
Conventionally, a status of 0 indicates success and nonzero values indicate errors. Every user
program that finishes in the normal way calls exit - even a program that returns from main()

calls exit indirectly (see start() in lib/user/entry.c). In order to make the test suite pass, you

16

CS 162 Fall 2018 Project 2: User Programs

need to print out the exit status of each user program when it exits. The code should look like:
“printf("%s: exit(%d)\n", thread_current()->name, exit_code);”.

System Call: pid t exec (const char *cmd line) Runs the executable whose name is given in
cmd_line, passing any given arguments, and returns the new process’s program id (pid). Must
return pid -1, which otherwise should not be a valid pid, if the program cannot load or run for
any reason. Thus, the parent process cannot return from the exec until it knows whether the child
process successfully loaded its executable. You must use appropriate synchronization to ensure
this.

System Call: int wait (pid t pid) Waits for a child process pid and retrieves the child’s exit status.

If pid is still alive, waits until it terminates. Then, returns the status that pid passed to exit.
If pid did not call exit(), but was terminated by the kernel (e.g. killed due to an exception),
wait(pid) must return -1. It is perfectly legal for a parent process to wait for child processes
that have already terminated by the time the parent calls wait, but the kernel must still allow the
parent to retrieve its child’s exit status, or learn that the child was terminated by the kernel.

wait must fail and return -1 immediately if any of the following conditions is true:

• pid does not refer to a direct child of the calling process. pid is a direct child of the calling
process if and only if the calling process received pid as a return value from a successful call
to exec.

Note that children are not inherited: if A spawns child B and B spawns child process C, then
A cannot wait for C, even if B is dead. A call to wait(C) by process A must fail. Similarly,
orphaned processes are not assigned to a new parent if their parent process exits before they
do.

• The process that calls wait has already called wait on pid. That is, a process may wait for
any given child at most once.

Processes may spawn any number of children, wait for them in any order, and may even exit
without having waited for some or all of their children. Your design should consider all the ways
in which waits can occur. All of a process’s resources, including its struct thread, must be freed
whether its parent ever waits for it or not, and regardless of whether the child exits before or after
its parent.

You must ensure that Pintos does not terminate until the initial process exits. The supplied
Pintos code tries to do this by calling process_wait() (in userprog/process.c) from main() (in
threads/init.c). We suggest that you implement process_wait() according to the comment at
the top of the function and then implement the wait system call in terms of process_wait().

Warning: Implementing this system call requires considerably more work than any
of the rest.

3.2.3 File System Calls

For task 3, you will need to implement the following system calls:

System Call: bool create (const char *file, unsigned initial size) Creates a new file called file
initially initial size bytes in size. Returns true if successful, false otherwise. Creating a new file
does not open it: opening the new file is a separate operation which would require a open system
call.

System Call: bool remove (const char *file) Deletes the file called file. Returns true if successful,
false otherwise. A file may be removed regardless of whether it is open or closed, and removing an
open file does not close it. See Removing an Open File, for details.

17

CS 162 Fall 2018 Project 2: User Programs

System Call: int open (const char *file) Opens the file called file. Returns a nonnegative integer
handle called a “file descriptor” (fd), or -1 if the file could not be opened.

File descriptors numbered 0 and 1 are reserved for the console: fd 0 (STDIN_FILENO) is standard
input, fd 1 (STDOUT_FILENO) is standard output. The open system call will never return either of
these file descriptors, which are valid as system call arguments only as explicitly described below.

Each process has an independent set of file descriptors. File descriptors are not inherited by child
processes.

When a single file is opened more than once, whether by a single process or different processes, each
open returns a new file descriptor. Different file descriptors for a single file are closed independently
in separate calls to close and they do not share a file position.

System Call: int filesize (int fd) Returns the size, in bytes, of the file open as fd.

System Call: int read (int fd, void *buffer, unsigned size) Reads size bytes from the file open
as fd into buffer. Returns the number of bytes actually read (0 at end of file), or -1 if the file
could not be read (due to a condition other than end of file). Fd 0 reads from the keyboard using
input_getc().

System Call: int write (int fd, const void *buffer, unsigned size) Writes size bytes from buffer
to the open file fd. Returns the number of bytes actually written, which may be less than size if
some bytes could not be written.

Writing past end-of-file would normally extend the file, but file growth is not implemented by the
basic file system. The expected behavior is to write as many bytes as possible up to end-of-file and
return the actual number written, or 0 if no bytes could be written at all.

Fd 1 writes to the console. Your code to write to the console should write all of buffer in one call to
putbuf(), at least as long as size is not bigger than a few hundred bytes. (It is reasonable to break
up larger buffers.) Otherwise, lines of text output by different processes may end up interleaved
on the console, confusing both human readers and our grading scripts.

System Call: void seek (int fd, unsigned position) Changes the next byte to be read or written
in open file fd to position, expressed in bytes from the beginning of the file. (Thus, a position of 0
is the file’s start.)

A seek past the current end of a file is not an error. A later read obtains 0 bytes, indicating end
of file. A later write extends the file, filling any unwritten gap with zeros. (However, in Pintos
files have a fixed length until project 4 is complete, so writes past end of file will return an error.)
These semantics are implemented in the file system and do not require any special effort in system
call implementation.

System Call: unsigned tell (int fd) Returns the position of the next byte to be read or written in
open file fd, expressed in bytes from the beginning of the file.

System Call: void close (int fd) Closes file descriptor fd. Exiting or terminating a process implic-
itly closes all its open file descriptors, as if by calling this function for each one.

3.3 FAQ

How much code will I need to write? Here’s a summary of our reference solution, produced by
the diffstat program. the final row gives total lines inserted and deleted; a changed line counts as
both an insertion and a deletion.

The reference solution represents just one possible solution. many other solutions are also possible
and many of those differ greatly from the reference solution. some excellent solutions may not

18

CS 162 Fall 2018 Project 2: User Programs

modify all the files modified by the reference solution, and some may modify files not modified by
the reference solution.

threads/thread.c | 13

threads/thread.h | 26 +

userprog/exception.c | 8

userprog/process.c | 247 ++++++++++++++--

userprog/syscall.c | 468 ++++++++++++++++++++++++++++++-

userprog/syscall.h | 1

6 files changed, 725 insertions(+), 38 deletions(-)

The kernel always panics when I run pintos -p file -- -q. Did you format the file system
(with pintos -f)?

Is your file name too long? The file system limits file names to 14 characters. A command like
pintos -p ../../examples/echo -- -q will exceed the limit. Use
pintos -p ../../examples/echo -a echo -- -q to put the file under the name echo instead.

Is the file system full?

Does the file system already contain 16 files? The base Pintos file system has a 16-file limit.

The file system may be so fragmented that there’s not enough contiguous space for your file.

When I run pintos -p ../file --, file isn’t copied. Files are written under the name you refer
to them, by default, so in this case the file copied in would be named ../file. You probably want
to run pintos -p ../file -a file -- instead.

You can list the files in your file system with pintos -q ls.

All my user programs die with page faults. This will happen if you haven’t implemented argu-
ment passing (or haven’t done so correctly). The basic C library for user programs tries to read
argc and argv off the stack. If the stack isn’t properly set up, this causes a page fault.

All my user programs die with system call! You’ll have to implement system calls before you see
anything else. Every reasonable program tries to make at least one system call (exit()) and most
programs make more than that. Notably, printf() invokes the write system call. The default
system call handler just prints system call! and terminates the program. Until then, you can
use hex_dump() to convince yourself that argument passing is implemented correctly (see section
Program Startup Details).

How can I disassemble user programs? The objdump (80x86) or i386-elf-objdump (SPARC) util-
ity can disassemble entire user programs or object files. Invoke it as objdump -d file. You can use
GDB’s disassemble command to disassemble individual functions.

Why do many C include files not work in Pintos programs?

Can I use libfoo in my Pintos programs? The C library we provide is very limited. It does not
include many of the features that are expected of a real operating system’s C library. The C library
must be built specifically for the operating system (and architecture), since it must make system
calls for I/O and memory allocation. (Not all functions do, of course, but usually the library is
compiled as a unit.)

The chances are good that the library you want uses parts of the C library that Pintos doesn’t
implement. It will probably take at least some porting effort to make it work under Pintos.
Notably, the Pintos user program C library does not have a malloc() implementation.

19

CS 162 Fall 2018 Project 2: User Programs

How do I compile new user programs? Modify src/examples/Makefile, then run make.

Can I run user programs under a debugger? Yes, with some limitations. See the section of this
spec on GDB macros.

What’s the difference between tid t and pid t? A tid_t identifies a kernel thread, which may
have a user process running in it (if created with process_execute()) or not (if created with
thread_create()). It is a data type used only in the kernel.

A pid_t identifies a user process. It is used by user processes and the kernel in the exec and wait
system calls.

You can choose whatever suitable types you like for tid_t and pid_t. By default, they’re both
int. You can make them a one-to-one mapping, so that the same values in both identify the same
process, or you can use a more complex mapping. It’s up to you.

3.3.1 Argument Passing FAQ

Isn’t the top of stack in kernel virtual memory? The top of stack is at PHYS_BASE, typically
0xc0000000, which is also where kernel virtual memory starts. But before the processor pushes
data on the stack, it decrements the stack pointer. Thus, the first (4-byte) value pushed on the
stack will be at address 0xbffffffc.

Is PHYS BASE fixed? No. You should be able to support PHYS_BASE values that are any multiple
of 0x10000000 from 0x80000000 to 0xf0000000, simply via recompilation.

How do I handle multiple spaces in an argument list? Multiple spaces should be treated as one
space. You do not need to support quotes or any special characters other than space.

Can I enforce a maximum size on the arguments list? You can set a reasonable limit on the
size of the arguments.

3.3.2 System Calls FAQ

Can I just cast a struct file * to get a file descriptor?

Can I just cast a struct thread * to a pid t? You will have to make these design decisions your-
self. Most operating systems do distinguish between file descriptors (or pids) and the addresses of
their kernel data structures. You might want to give some thought as to why they do so before
committing yourself.

Can I set a maximum number of open files per process? It is better not to set an arbitrary
limit. You may impose a limit of 128 open files per process, if necessary.

What happens when an open file is removed? You should implement the standard Unix seman-
tics for files. That is, when a file is removed any process which has a file descriptor for that file
may continue to use that descriptor. This means that they can read and write from the file. The
file will not have a name, and no other processes will be able to open it, but it will continue to
exist until all file descriptors referring to the file are closed or the machine shuts down.

How can I run user programs that need more than 4 kB stack space? You may modify the
stack setup code to allocate more than one page of stack space for each process. This is not required
in this project.

20

CS 162 Fall 2018 Project 2: User Programs

What should happen if an exec fails midway through loading? exec should return -1 if the
child process fails to load for any reason. This includes the case where the load fails part of
the way through the process (e.g. where it runs out of memory in the multi-oom test). Therefore,
the parent process cannot return from the exec system call until it is established whether the load
was successful or not. The child must communicate this information to its parent using appropriate
synchronization, such as a semaphore, to ensure that the information is communicated without
race conditions.

21

	Your task
	Task 1: Argument Passing
	Task 2: Process Control Syscalls
	Task 3: File Operation Syscalls

	Deliverables
	Design Document (Due 10/17) and Design Review
	Design Document Guidelines
	Design Document Additional Questions
	GDB Questions
	Design Review
	Grading

	Code (Due 11/02)
	Student Testing Code (Due 11/02)

	Student Testing Report (Due 11/05)
	Final Report (Due 11/05) and Code Quality

	Reference
	Pintos
	Getting Started
	Source Files
	Using the File System
	Formatting and Using the Filesystem
	How User Programs Work
	Virtual Memory Layout
	Accessing User Memory
	80x86 Calling Convention
	Program Startup Details
	Adding new tests to Pintos

	System Calls
	System Call Overview
	Process System Calls
	File System Calls

	FAQ
	Argument Passing FAQ
	System Calls FAQ

