
CS 162 Project 3: File Systems

Design Document Due: Wednesday, November 14, 2018
Code Due: Monday, December 3, 2018

Final Report Due: Wednesday, December 5, 2018

Contents

1 Your OS 2

2 Your task 2
2.1 Task 1: Buffer cache . 3
2.2 Task 2: Extensible files . 3
2.3 Task 3: Subdirectories . 3
2.4 Synchronization requirement . 3

3 Deliverables 4
3.1 Design Document (Due Wednesday, November 14, 2018) and Design Review 4

3.1.1 Design Document Guidelines . 4
3.1.2 Topics for your design document . 5
3.1.3 Design Document Additional Questions . 5
3.1.4 Design Review . 6
3.1.5 Grading . 6

3.2 Code (Due Monday, December 3, 2018) . 6
3.2.1 Student Testing Code (Due Monday, December 3, 2018) 6

3.3 Final Report (Due Wednesday, December 5, 2018) and Code Quality 7
3.3.1 Testing Report Due Wednesday, December 5, 2018 7

4 Reference 8
4.1 Getting Started . 8
4.2 Source Files . 8
4.3 Testing File System Persistence . 9
4.4 Requirements . 9

4.4.1 Buffer Cache . 9
4.4.2 Indexed and Extensible Files . 10
4.4.3 Subdirectories . 10
4.4.4 System Calls . 11

4.5 Pintos user program tests . 12
4.6 How to add tests to Pintos . 13
4.7 Suggested Order of Implementation . 13
4.8 FAQ . 13

1

CS 162 Fall 2018 Project 3: File Systems

1 Your OS

At this stage, your operating system is pretty powerful — it can run any user process implemented
within Pintos’ narrow syscall interface. This means you can run a shell, compiler, Minesweeper, or any
other user program your heart desires! However, one big caveat is that we have not implemented a
syscall to allocate more memory for either our heap or stack. If you wish to go the extra mile, you can
implement this upon completion of project 3. Anyway, luckily for us, we don’t even have to write these
user programs because they are bundled for us in the src/examples directory. You’ll see that we get
the following programs:

• shell
• cat
• cmp
• cp
• hex-dump

• insult (look at the source
code if you wish to see what
it does)

• echo
• ls

• rm
• mkdir
• and more...

Before we dive into project 3 you’ll see how we can run these programs on your operating system.
We encourage you to take advantage of these in order to do manual testing of your filesystem.

To begin, please compile all of the examples by running make in src/examples and in src/userprog.
Then run this script in src/userprog/build (the script can be downloaded here).

PROGRAMS=”bubsort \
cat \
cmp \
cp \
echo \
hex−dump \
i n s u l t \
l s \
mkdir \
pwd \
rm \
s h e l l ”
EXAMPLES=” . . / . . / examples ”
CMDLINE=” p in to s −− f i l e s y s −s i z e =100”
CMDLINE END=”−f −q run ’ s h e l l ’ ”

f o r PROGRAM in $PROGRAMS; do
CMDLINE+=” −p $EXAMPLES/$PROGRAM −a $PROGRAM”

done
CMDLINE+=” −− $CMDLINE END”
echo $CMDLINE
eva l $CMDLINE

run.sh

The script will install the example binaries in the root directory and start Pintos with the provided
shell. Most of these will not work correctly until you finish this project. Some, like insult or hex-dump,
should work if proj2 was implemented correctly. Try them out and see what does and doesn’t work. Try
to understand why.

2 Your task

In this project, you will add 3 new features to the Pintos file system. A brief summary of the tasks is
provided here. A more detailed explanation can be found in section 4.4.

2

https://raw.githubusercontent.com/Berkeley-CS162/group0/master/pintos/utils/run.sh

CS 162 Fall 2018 Project 3: File Systems

Important: This project requires a working proj2. If you aren’t passing all (or nearly all) of the
test in userprog, you should fix those first. If they can’t be easily fixed, talk to your TA about getting
a reference solution.

2.1 Task 1: Buffer cache

The functions inode_read_at() and inode_write_at() currently access the filesystem’s underlying
block device directly, each time you call them. Your task is to add a buffer cache for the filesystem, to
improve the performance of reads and writes. Your buffer cache will cache individual disk blocks, so
that (1) you can respond to reads with cached data and (2) you can coalesce multiple writes into a single
disk operation. The buffer cache should have a maximum capacity of 64 disk blocks. You may choose a
block replacement policy, but it must be at least as good as the clock algorithm. The buffer cache must
be a write-back cache, not a write-through cache. You must make sure that ALL disk operations use
your buffer cache, not just the two inode functions mentioned earlier.

2.2 Task 2: Extensible files

Pintos currently cannot extend the size of files, because the Pintos filesystem allocates each file as a
single contiguous set of blocks. Your task is to modify the Pintos filesystem to support extending files.
You may want to use an indexed inode structure with direct, indirect, and doubly-indirect pointers, like
the Unix file system does. The maximum file size you need to support is 8MiB (223 bytes). You must
also add support for a new syscall, “inumber(int fd)”, which returns the unique inode number of file
associated with a particular file descriptor.

2.3 Task 3: Subdirectories

The current Pintos filesystem supports directories, but user programs have no way of using them (files
can only be placed in the root directory right now). You must add the following syscalls to allow
user programs to manipulate directories: chdir, mkdir, readdir, and isdir. You must also update the
following syscalls so that they work with directories: open, close, exec, remove, and inumber. You must
also add support for relative paths for any syscall with a file path argument. For example, if a process
calls chdir("my_files/") and then open("notes.txt"), you should search for notes.txt relative to
the current directory and open the file my_files/notes.txt. You also need to support absolute paths
like open("/my_files/notes.txt"). You need to support the special “.” and “..” names, when they
appear in file path arguments, such as open("../logs/foo.txt"). Child processes should inherit the
parent’s current working directory. The first user process should have the root directory as its current
working directory.

2.4 Synchronization requirement

Your project code should always be thread-safe, but for Project 3, we don’t want you to just use a single
global lock around the entire filesystem. As you plan your design for this project, you must ensure that
2 operations acting on different disk sectors, different files, and different directories can run
simultaneously. You may serialize operations that occur on the same disk sector. For example, two
syscalls like remove("/my_files/notes.txt") and readdir(open("/my_files/")) may exhibit mu-
tual exclusion, because they involve the same directory. However, read(open("/my_files/notes.txt"))
and write(open("/my_files/test.c")) should be allowed to run concurrently, since they operate on
two different files and reading and writing do not involve the parent directory “my files”. This synchro-
nization requirement applies to all 3 tasks: the buffer cache, extensible files, and subdirectories.

Note: If you added a global file system lock in Project 2, remember to remove it!

3

CS 162 Fall 2018 Project 3: File Systems

3 Deliverables

Your project grade will be made up of 4 components:

• 20% Design Document and Design Review

• 55% Code

• 15% Student Testing

• 10% Final Report and Code Quality

3.1 Design Document (Due Wednesday, November 14, 2018) and Design
Review

Before you start writing any code for your project, you should create an implementation plan for each
feature and convince yourself that your design is correct. For this project, you must submit a design
document and attend a design review with your project TA.

3.1.1 Design Document Guidelines

Write your design document inside the doc/project3.md file, which has already been placed in your
group’s GitHub repository. You must use GitHub Flavored Markdown1 to format your design document.
You can preview your design document on GitHub’s web interface by going to the following address:
(replace group0 with your group number)

https://github.com/Berkeley-CS162/group0/blob/master/doc/project3.md

For each of the 3 tasks of this project, you must explain the following 4 aspects of your proposed
design. We suggest you create a section for each of the 3 project parts. Then, create subsections for
each of these 4 aspects.

1. Data structures and functions – Write down any struct definitions, global (or static) variables,
typedefs, or enumerations that you will be adding or modifying (if it already exists). These
definitions should be written with the C programming language, not with pseudocode. Include
a brief explanation the purpose of each modification. Your explanations should be as concise as
possible. Leave the full explanation to the following sections.

2. Algorithms – This is where you tell us how your code will work. Your description should be at a
level below the high level description of requirements given in the assignment. We have read the
project spec too, so it is unnecessary to repeat or rephrase what is stated here. On the other hand,
your description should be at a level above the code itself. Don’t give a line-by-line run-down of
what code you plan to write. Instead, you should try to convince us that your design satisfies all
the requirements, including any uncommon edge cases. This section should be similar in style
and format to the design document you submitted for Project 1 and Project 2. We expect you
to read through the Pintos source code when preparing your design document, and your design
document should refer to the Pintos source when necessary to clarify your implementation.

3. Synchronization – This section should list all resources that are shared across threads. For each
case, enumerate how the resources are accessed (e.g., from inside of the scheduler, in an interrupt
context, etc), and describe the strategy you plan to use to ensure that these resources are shared
and modified safely. For each resource, demonstrate that your design ensures correct behavior and
avoids deadlock. In general, the best synchronization strategies are simple and easily verifiable.

1https://help.github.com/articles/basic-writing-and-formatting-syntax/

4

https://help.github.com/articles/basic-writing-and-formatting-syntax/

CS 162 Fall 2018 Project 3: File Systems

If your synchronization strategy is difficult to explain, this is a good indication that you should
simplify your strategy. Please discuss the time/memory costs of your synchronization approach,
and whether your strategy will significantly limit the parallelism of the kernel. When discussing the
parallelism allowed by your approach, explain how frequently threads will contend on the shared
resources, and any limits on the number of threads that can enter independent critical sections at
a single time.

4. Rationale – Tell us why your design is better than the alternatives that you considered, or
point out any shortcomings it may have. You should think about whether your design is easy to
conceptualize, how much coding it will require, the time/space complexity of your algorithms, and
how easy/difficult it would be to extend your design to accommodate additional features.

3.1.2 Topics for your design document

Make sure to address each of these issues in the Algorithms and Synchronization sections of your
design document. You do not need to answer these questions directly, but your design document should
clearly demonstrate that your design will not exhibit any of these problems.

• When one process is actively reading or writing data in a buffer cache block, how are other processes
prevented from evicting that block?

• During the eviction of a block from the cache, how are other processes prevented from attempting
to access the block?

• If a block is currently being loaded into the cache, how are other processes prevented from also
loading it into a different cache entry? How are other processes prevented from accessing the block
before it is fully loaded?

• How will your filesystem take a relative path like ../my_files/notes.txt and locate the corre-
sponding directory? Also, how will you locate absolute paths like /cs162/solutions.md?

• Will a user process be allowed to delete a directory if it is the cwd of a running process? The test
suite will accept both “yes” and “no”, but in either case, you must make sure that new files cannot
be created in deleted directories.

• How will your syscall handlers take a file descriptor, like 3, and locate the corresponding file or
directory struct?

• You are already familiar with handling memory exhaustion in C, by checking for a NULL return
value from malloc. In this project, you will also need to handle disk space exhaustion. When your
filesystem is unable to allocate new disk blocks, you must have a strategy to abort the current
operation and rollback to a previous good state.

3.1.3 Design Document Additional Questions

You must also answer these additional questions in your design document:

1. For this project, there are 2 optional buffer cache features that you can implement: write-behind
and read-ahead. A buffer cache with write-behind will periodically flush dirty blocks to the filesys-
tem block device, so that if a power outage occurs, the system will not lose as much data. Without
write-behind, a write-back cache only needs to write data to disk when (1) the data is dirty and
gets evicted from the cache, or (2) the system shuts down. A cache with read-ahead will predict
which block the system will need next and fetch it in the background. A read-ahead cache can
greatly improve the performance of sequential file reads and other easily-predictable file access

5

CS 162 Fall 2018 Project 3: File Systems

patterns. Please discuss a possible implementation strategy for write-behind and a strategy for
read-ahead. You must answer this question regardless of whether you actually decide
to implement these features.

3.1.4 Design Review

You will schedule a 20 minute design review with your project TA. During the design review, your TA
will ask you questions about your design for the project. You should be prepared to defend your design
and answer any clarifying questions your TA may have about your design document. The design review
is also a good opportunity to get to know your TA for those participation points.

3.1.5 Grading

The design document and design review will be graded together. Your score will reflect how convincing
your design is, based on your explanation in your design document and your answers during the design
review. You must attend a design review in order to get these points. We will try to accommodate any
time conflicts, but you should let your TA know as soon as possible.

3.2 Code (Due Monday, December 3, 2018)

The code section of your grade will be determined by your autograder score. Pintos comes with a test
suite that you can run locally on your VM. We run the same tests on the autograder. The results of
these tests will determine your code score.

You can check your current grade for the code portion at any time by logging in to the course
autograder. Autograder results will also be emailed to you.

3.2.1 Student Testing Code (Due Monday, December 3, 2018)

Pintos already contains a test suite for Project 3, but it does not cover the buffer cache. For this project,
you must implement two of the following test cases:

• Test your buffer cache’s effectiveness by measuring its cache hit rate. First, reset the buffer cache.
Open a file and read it sequentially, to determine the cache hit rate for a cold cache. Then, close
it, re-open it, and read it sequentially again, to make sure that the cache hit rate improves.

• Test your buffer cache’s ability to coalesce writes to the same sector. Each block device keeps
a read_cnt counter and a write_cnt counter. Write a large file byte-by-byte (make the total
file size at least 64KB, which is twice the maximum allowed buffer cache size). Then, read it in
byte-by-byte. The total number of device writes should be on the order of 128 (because 64KB is
128 blocks).

• Test your buffer cache’s ability to write full blocks to disk without reading them first. If you are,
for example, writing 100KB (200 blocks) to a file, your buffer cache should perform 200 calls to
block_write, but 0 calls to block_read, since exactly 200 blocks worth of data are being written.
(Read operations on inode metadata are still acceptable.) As mentioned earlier, each block device
keeps a read_cnt counter and a write_cnt counter. You can use this to verify that your buffer
cache does not introduce unnecessary block reads.

You should focus on writing tests for general buffer-cache features, rather than writing tests for your
specific implementation of the buffer cache. You should write your test cases with a minimal set of
assumptions about the underlying buffer cache implementation, but you are permitted to make as many
basic assumptions about the buffer cache as you need to, since it is very difficult to write buffer cache

6

CS 162 Fall 2018 Project 3: File Systems

tests without doing so. Use your good judgement, and create test cases that could potentially be adapted
to a different group’s project without rewriting the whole thing.

Once you finish writing your test cases, make sure that they get executed when you run “make check”
in the pintos/src/filesys/ directory.

3.3 Final Report (Due Wednesday, December 5, 2018) and Code Quality

After you complete the code for your project, you will submit a final report. Write your final report
inside the reports/project3.md file, which has already been placed in your group’s GitHub repository.
Please include the following in your final report:

• The changes you made since your initial design document and why you made them (feel free to
re-iterate what you discussed with your TA in the design review)

• A reflection on the project – what exactly did each member do? What went well, and what could
be improved?

• Your Student Testing Report (see the previous section for more details)

You will also be graded on the quality of your code. This will be based on many factors:

• Does your code exhibit any major memory safety problems (especially regarding C strings), memory
leaks, poor error handling, or race conditions?

• Did you use consistent code style? Your code should blend in with the existing Pintos code. Check
your use of indentation, your spacing, and your naming conventions.

• Is your code simple and easy to understand?

• If you have very complex sections of code in your solution, did you add enough comments to explain
them?

• Did you leave commented-out code in your final submission?

• Did you copy-paste code instead of creating reusable functions?

• Did you re-implement linked list algorithms instead of using the provided list manipulation

• Are your lines of source code excessively long? (more than 100 characters)

• Is your Git commit history full of binary files? (don’t commit object files or log files, unless you
actually intend to)

3.3.1 Testing Report Due Wednesday, December 5, 2018

You will need to prepare a Student Testing Report, which will help us grade your test cases. Place your
Student Testing Report inside reports/project3.md, alongside your final report.

Make sure your Student Testing Report contains the following:

• For each of the 2 test cases you write:

– Provide a description of the feature your test case is supposed to test.

– Provide an overview of how the mechanics of your test case work, as well as a qualitative
description of the expected output.

7

CS 162 Fall 2018 Project 3: File Systems

– Provide the output of your own Pintos kernel when you run the test case. Please copy the
full raw output file from filesys/build/tests/filesys/extended/your-test-1.output as
well as the raw results from filesys/build/tests/filesys/extended/your-test-1.result.

– Identify two non-trivial potential kernel bugs, and explain how they would have affected your
output of this test case. You should express these in this form: “If your kernel did X instead
of Y, then the test case would output Z instead.”. You should identify two different bugs per
test case, but you can use the same bug for both of your two test cases. These bugs should
be related to your test case (e.g. “If your kernel had a syntax error, then this test case would
not run.” does not count).

• Tell us about your experience writing tests for Pintos. What can be improved about the Pintos
testing system? (There’s a lot of room for improvement.) What did you learn from writing test
cases?

We will grade your test cases based on effort. If all of the above components are present in your
Student Testing Report and your test cases are satisfactory, you will get full credit on this part of the
project.

4 Reference

4.1 Getting Started

This project is a continuation of the userprog code you implemented in Project 2. You should use your
group’s Project 2 code as a starting point. The autograder will run some of the userprog tests of Project
2 in addition to the Project 3 file system tests.

4.2 Source Files

In this project, you’ll be working with a large number of files, primarily in the filesys directory. To help
you understand all the code, we’ve selected some key files and described them below:

directory.c Manages the directory structure. In Pintos, directories are stored as files.

file.c Performs file reads and writes by doing disk sector reads and writes.

filesys.c Top-level interface to the file system.

free-map.c Utilities for modifying the file system’s free block map.

fsutil.c Simple utilities for the file system that are accessible from the kernel command line.

inode.c Manages the data structure representing the layout of a file’s data on disk.

lib/kernel/bitmap.c A bitmap data structure along with routines for reading and writing the bitmap
to disk files.

All the basic functionality of a file system is already in the skeleton code, so that the file system is
usable from the start, as you’ve seen in Project 2. However, the current file system has some severe
limitations which you will remove.

8

CS 162 Fall 2018 Project 3: File Systems

4.3 Testing File System Persistence

Until now, each test invoked Pintos just once. However, an important purpose of a file system is to
ensure that data remains accessible from one boot to another. Thus, the Project 3 file system tests
invoke Pintos twice. During the second invocation, all the files and directories in the Pintos file system
are combined into a single file (known as a tarball), which is then copied from the Pintos file system to
the host (your development VM) file system.

The grading scripts check the file system’s correctness based on the contents of the file copied out
in the second run. This means that your project will not pass any of the extended file system tests
labeled *-persistence until the file system is implemented well enough to support tar, the Pintos user
program that produces the file that is copied out. The tar program is fairly demanding (it requires both
extensible file and subdirectory support), so this will take some work. Until then, you can ignore errors
from make check regarding the extracted file system.

Incidentally, as you may have surmised, the file format used for copying out the file system contents
is the standard Unix tar format. You can use the Unix tar program to examine them. The tar file for
test T is named T.tar.

4.4 Requirements

4.4.1 Buffer Cache

Modify the file system to keep a cache of file blocks. When a request is made to read or write a block,
check to see if it is in the cache, and if so, use the cached data without going to disk. Otherwise, fetch the
block from disk into the cache, evicting an older entry if necessary. Your cache must be no greater
than 64 sectors in size.

You must implement a cache replacement algorithm that is at least as good as the “clock” algorithm.
We encourage you to account for the generally greater value of metadata compared to data. You
can experiment to see what combination of accessed, dirty, and other information results in the best
performance, as measured by the number of disk accesses. Running pintos from the filesys/build

directory will cause a sum total of disk read and write operations to be printed to the console, right
before the kernel shuts down.

You can keep a cached copy of the free map permanently in a special place in memory if you would
like. It doesn’t count against the 64 sector limit.

The provided inode code uses a “bounce buffer” allocated with malloc() to translate the disk’s
sector-by-sector interface into the system call interface’s byte-by-byte interface. You should get rid of
these bounce buffers. Instead, copy data into and out of sectors in the buffer cache directly.

When data is written to the cache, it does not need to be written to disk immediately. You should
keep dirty blocks in the cache and write them to disk when they are evicted and when the system shuts
down (modify the filesys_done() function to do this).

If you only flush dirty blocks on eviction or shut down, your file system will be more fragile if a crash
occurs. As an optional feature, you can also make your buffer cache periodically flush dirty cache blocks
to disk. If you have non-busy waiting timer_sleep() from the Project 1 working, this would be an
excellent use for it. Otherwise, you may implement a less general facility, but make sure that it does not
exhibit busy-waiting.

As an optional feature, you can also implement read-ahead, that is, automatically fetch the next
block of a file into the cache when one block of a file is read. Read-ahead is only really useful when done
asynchronously. That means, if a process requests disk block 1 from the file, it should block until disk
block 1 is read in, but once that read is complete, control should return to the process immediately. The
read-ahead request for disk block 2 should be handled asynchronously, in the background.

9

CS 162 Fall 2018 Project 3: File Systems

4.4.2 Indexed and Extensible Files

The basic file system allocates files as a single extent, making it vulnerable to external fragmentation:
it is possible that an n-block file cannot be allocated even though n blocks are free. Eliminate this
problem by modifying the on-disk inode structure. In practice, this probably means using an
index structure with direct, indirect, and doubly indirect blocks. You are welcome to choose a different
scheme as long as you explain the rationale for it in your design documentation, and as long as it does
not suffer from external fragmentation (as does the extent-based file system we provide).

You can assume that the file system partition will not be larger than 8 MB. You must support files as
large as the partition (minus metadata). Each inode is stored in one disk sector, limiting the number of
block pointers that it can contain. Supporting 8 MB files will require you to implement doubly-indirect
blocks.

An extent-based file can only grow if it is followed by empty space, but indexed inodes make file
growth possible whenever free space is available. Implement file growth. In the basic file system, the
file size is specified when the file is created. In most modern file systems, a file is initially created with
size 0 and is then expanded every time a write is made off the end of the file. Your file system must
allow this.

There should be no predetermined limit on the size of a file, except that a file cannot exceed the size
of the file system (minus metadata). This also applies to the root directory file, which should now be
allowed to expand beyond its initial limit of 16 files.

User programs are allowed to seek beyond the current end-of-file (EOF). The seek itself does not
extend the file. Writing at a position past EOF extends the file to the position being written, and any
gap between the previous EOF and the start of the write() must be filled with zeros. A read() starting
from a position past EOF returns no bytes.

Writing far beyond EOF can cause many blocks to be entirely zero. Some file systems allocate and
write real data blocks for these implicitly zeroed blocks. Other file systems do not allocate these blocks
at all until they are explicitly written. The latter file systems are said to support “sparse files.” You
may adopt either allocation strategy in your file system.

4.4.3 Subdirectories

Implement support for hierarchical directory trees. In the basic file system, all files live in a
single directory. Modify this to allow directory entries to point to files or to other directories.

Make sure that directories can expand beyond their original size just as any other file can.
The basic file system has a 14-character limit on file names. You may retain this limit for individual

file name components, or may extend it. You must allow full path names to be much longer
than 14 characters.

Maintain a separate current directory for each process. At startup, set the file system root
as the initial process’s current directory. When one process starts another with the exec system call,
the child process inherits its parent’s current directory. After that, the two processes’ current directories
are independent, so that either changing its own current directory has no effect on the other. (This is
why, under Unix, the cd command is a shell built-in, not an external program.)

Update the existing system calls so that, anywhere a file name is provided by the caller,
an absolute or relative path name may used. The directory separator character is forward slash
(/). You must also support special file names . and .., which have the same meanings as they do in
Unix.

Update the open system call so that it can also open directories. You should not support read or
write on a fd that corresponds to a directory. (You will implement readdir and mkdir for directories
instead.) You should support close on a directory, which just closes the directory.

Update the remove system call so that it can delete empty directories (other than the root) in addition
to regular files. Directories may only be deleted if they do not contain any files or subdirectories (other
than . and ..). You may decide whether to allow deletion of a directory that is open by a process or in

10

CS 162 Fall 2018 Project 3: File Systems

use as a process’s current working directory. If it is allowed, then attempts to open files (including . and
..) or create new files in a deleted directory must be disallowed.

Here is some code that will help you split a file system path into its components. It supports all of
the features that are required by the tests. It is up to you to decide if and where and how to use it.

/* Extracts a file name part from *SRCP into PART, and updates *SRCP so that the

next call will return the next file name part. Returns 1 if successful, 0 at

end of string, -1 for a too-long file name part. */

static int

get_next_part (char part[NAME_MAX + 1], const char **srcp) {

const char *src = *srcp;

char *dst = part;

/* Skip leading slashes. If it’s all slashes, we’re done. */

while (*src == ’/’)

src++;

if (*src == ’\0’)

return 0;

/* Copy up to NAME_MAX character from SRC to DST. Add null terminator. */

while (*src != ’/’ && *src != ’\0’) {

if (dst < part + NAME_MAX)

*dst++ = *src;

else

return -1;

src++;

}

*dst = ’\0’;

/* Advance source pointer. */

*srcp = src;

return 1;

}

4.4.4 System Calls

Implement the following new system calls:

System Call: bool chdir (const char *dir) Changes the current working directory of the process
to dir, which may be relative or absolute. Returns true if successful, false on failure.

System Call: bool mkdir (const char *dir) Creates the directory named dir, which may be rel-
ative or absolute. Returns true if successful, false on failure. Fails if dir already exists or if any
directory name in dir, besides the last, does not already exist. That is, mkdir(“/a/b/c”) succeeds
only if /a/b already exists and /a/b/c does not.

System Call: bool readdir (int fd, char *name) Reads a directory entry from file descriptor fd,
which must represent a directory. If successful, stores the null-terminated file name in name, which
must have room for READDIR MAX LEN + 1 bytes, and returns true. If no entries are left in the
directory, returns false.

. and .. should not be returned by readdir

11

CS 162 Fall 2018 Project 3: File Systems

If the directory changes while it is open, then it is acceptable for some entries not to be read at all
or to be read multiple times. Otherwise, each directory entry should be read once, in any order.

READDIR MAX LEN is defined in lib/user/syscall.h. If your file system supports longer file names
than the basic file system, you should increase this value from the default of 14.

System Call: bool isdir (int fd) Returns true if fd represents a directory, false if it represents an
ordinary file.

System Call: int inumber (int fd) Returns the inode number of the inode associated with fd, which
may represent an ordinary file or a directory.

An inode number persistently identifies a file or directory. It is unique during the file’s existence.
In Pintos, the sector number of the inode is suitable for use as an inode number.

We have provided ls and mkdir user programs, which are straightforward once the above syscalls
are implemented. We have also provided pwd, which is not so straightforward. The shell program
implements cd internally.

The pintos extract and pintos append commands should now accept full path names, assuming
that the directories used in the paths have already been created. This should not require any significant
extra effort on your part.

4.5 Pintos user program tests

You should add your two test cases to the filesys/extended test suite, which is included when you
run make check from the filesys directory. All of the filesys and userprog tests are “user program” tests,
which means that they are only allowed to interact with the kernel via system calls. Since buffer cache
information and block device statistics are NOT currently exposed to user programs, you
must create new system calls to support your two new buffer cache tests. You can create
new system calls by modifying these files (and their associated header files):

lib/syscall-nr.h Defines the syscall numbers and symbolic constants. This file is used by both user
programs and the kernel.

lib/user/syscall.c Syscall functions for user programs

userprog/syscall.c Syscall handler implementations

Some things to keep in mind while writing your test cases:

• User programs have access to a limited subset of the C standard library. You can find the user
library in lib/.

• User programs cannot directly access variables in the kernel.

• User programs do not have access to malloc, since brk and sbrk are not implemented. User
programs also have a limited stack size. If you need a large buffer, make it a static global variable.

• Pintos starts with 4MB of memory and the file system block device is 2MB by default. Don’t use
data structures or files that exceed these sizes.

• Your test should use msg() instead of printf() (they have the same function signature).

12

CS 162 Fall 2018 Project 3: File Systems

4.6 How to add tests to Pintos

You can add new test cases to the filesys/extended suite by modifying these files:

tests/filesys/extended/Make.tests Entry point for the filesys/extended test suite. You need to
add the name of your test to the raw_tests variable, in order for the test suite to find it.

tests/filesys/extended/my-test-1.c This is the test code for your test (you are free to use what-
ever name you wish, “my-test-1” is just an example). Your test should define a function called
test_main, which contains a user-level program. This is the main body of your test case, which
should make syscalls and print output. Use the msg() function instead of printf.

tests/filesys/extended/my-test-1.ck Every test needs a .ck file, which is a Perl script that checks
the output of the test program. If you are not familiar with Perl, don’t worry! You can probably
get through this part with some educated guessing. Your check script should use the subroutines
that are defined in tests/tests.pm. At the end, call pass to print out the “PASS” message,
which tells the Pintos test driver that your test passed.

tests/filesys/extended/my-test-1-persistence.ck Pintos expects a second .ck file for every filesys/extended

test case. After each test case is run, the kernel is rebooted using the same file system disk image,
then Pintos saves the entire file system to a tarball and exports it to the host machine. The
*-persistence.ck script checks that the tarball of the file system contains the correct structure
and contents. You do not need to do any checking in this file, if your test case does
not require it. However, you should call pass in this file anyway, to satisfy the Pintos testing
framework.

4.7 Suggested Order of Implementation

To make your job easier, we suggest implementing the parts of this project in the following order. You
should think about synchronization throughout all steps.

• Implement the buffer cache and integrate it into the existing file system. At this point all the tests
from Project 2 should still pass.

• Extensible files. After this step, your project should pass the file growth tests.

• Subdirectories. Afterward, your project should pass the directory tests.

• Remaining miscellaneous items.

• You can implement extensible files and subdirectories in parallel if you temporarily make the
number of entries in new directories fixed.

4.8 FAQ

The following questions have been frequently asked by students in the past.

Can BLOCK SECTOR SIZE change? No, BLOCK SECTOR SIZE is fixed at 512. For IDE
disks, this value is a fixed property of the hardware. Other disks do not necessarily have a 512-
byte sector, but for simplicity Pintos only supports those that do.

What is the largest file size that we are supposed to support? The file system partition we cre-
ate will be 8 MB or smaller. However, individual files will have to be smaller than the partition to
accommodate the metadata. You’ll need to consider this when deciding your inode organization.

13

CS 162 Fall 2018 Project 3: File Systems

How should a file name like a//b be interpreted? Multiple consecutive slashes are equivalent to
a single slash, so this file name is the same as a/b.

How about a file name like /../x? The root directory is its own parent, so it is equivalent to /x/.

How should a file name that ends in / be treated? Most Unix systems allow a slash at the end
of the name for a directory, and reject other names that end in slashes. We will allow this behavior,
as well as simply rejecting a name that ends in a slash.

Can we keep a struct inode disk inside struct inode? The goal of the 64-block limit is to bound
the amount of cached file system data. If you keep a block of disk data–whether file data or
metadata–anywhere in kernel memory then you have to count it against the 64-block limit. The
same rule applies to anything that’s “similar” to a block of disk data, such as a struct inode_disk

without the length or sector_cnt members.

That means you’ll have to change the way the inode implementation accesses its corresponding
on-disk inode right now, since it currently just embeds a struct inode_disk in struct inode

and reads the corresponding sector from disk when it’s created. Keeping extra copies of inodes
would subvert the 64-block limitation that we place on your cache.

You can store a pointer to inode data in struct inode, but if you do so you should carefully make
sure that this does not limit your OS to 64 simultaneously open files. You can also store other
information to help you find the inode when you need it. Similarly, you may store some metadata
along each of your 64 cache entries.

You can keep a cached copy of the free map permanently in memory if you like. It doesn’t have
to count against the cache size.

byte_to_sector() in filesys/inode.c uses the struct inode_disk directly, without first reading
that sector from wherever it was in the storage hierarchy. This will no longer work. You will need to
change inode_byte_to_sector() to obtain the struct inode_disk from the cache before using
it.

14

	Your OS
	Your task
	Task 1: Buffer cache
	Task 2: Extensible files
	Task 3: Subdirectories
	Synchronization requirement

	Deliverables
	Design Document (Due Wednesday, November 14, 2018) and Design Review
	Design Document Guidelines
	Topics for your design document
	Design Document Additional Questions
	Design Review
	Grading

	Code (Due Monday, December 3, 2018)
	Student Testing Code (Due Monday, December 3, 2018)

	Final Report (Due Wednesday, December 5, 2018) and Code Quality
	Testing Report Due Wednesday, December 5, 2018

	Reference
	Getting Started
	Source Files
	Testing File System Persistence
	Requirements
	Buffer Cache
	Indexed and Extensible Files
	Subdirectories
	System Calls

	Pintos user program tests
	How to add tests to Pintos
	Suggested Order of Implementation
	FAQ

