
Section 10: Intro to I/O, Device Drivers, File Systems, FAT, and

Queuing Theory

October 30, 2018

Contents

1 Warmup 2
1.1 Short questions . 2

2 Vocabulary 4

3 Problems 6
3.1 Disabling Interrupts . 6
3.2 Disks . 6
3.3 FAT . 7
3.4 Queuing Theory . 8

1

CS 162 Fall 2018 Section 10: Intro to I/O, Device Drivers, File Systems, FAT, and Queuing Theory

1 Warmup

1.1 Short questions

1. (True/False) If a particular IO device implements a blocking interface, then you will need multiple
threads to have concurrent operations which use that device.

True. Only with non-blocking IO can you have concurrency without multiple threads.

2. (True/False) For IO devices which receive new data very frequently, it is more efficient to interrupt
the CPU than to have the CPU poll the device.

False. It is more efficient to poll, since the CPU will get overwhelmed with interrupts.

3. (True/False) With SSDs, writing data is straightforward and fast, whereas reading data is complex
and slow.

False, it is the opposite. SSDs have complex and slower writes because their memory cant be
easily mutated.

4. (True/False) User applications have to deal with the notion of file blocks, whereas operating systems
deal with the finer grained notion of disk sectors.

False, blocks are also an OS concept and are not exposed to users.

5. How does the OS catch a null pointer exception? Trace every action that happens in the OS based
on what you have learned in cs162 so far.

A process generates a virtual address of 0. The hardware tries to look up the VPN (also 0
here) in the TLB, and suffers a TLB miss. The page table is consulted, and the entry for
VPN 0 is found to be marked invalid. Thus, we have an invalid access, which transfers control
to the OS, which likely terminates the process (on UNIX systems, processes are sent a signal
which allows them to react to such a fault; if uncaught, however, the process is killed).

6. What is a block device? What is a character device? Why might one interface be more appropriate
than the other?

Both of these are types of interfaces to I/O devices. A block device accesses large chunks of
data (called blocks) at a time. A character device accesses individual bytes at a time. A block
device interface might be more appropriate for a hard drive, while a character device might
be more appropriate for a keyboard or printer.

2

CS 162 Fall 2018 Section 10: Intro to I/O, Device Drivers, File Systems, FAT, and Queuing Theory

7. Explain what is meant by “top half” and “bottom half” in the context of device drivers.

The top half of a device driver is used by the kernel to start I/O operations. The bottom half
of a device driver services interrupts produced by the device. You should know that Linux
has different definitions for “top half” and “bottom half”, which are essentially the reverse of
these definitions (top half in Linux is the interrupt service routine, whereas the bottom half
is the kernel-level bookkeeping).

3

CS 162 Fall 2018 Section 10: Intro to I/O, Device Drivers, File Systems, FAT, and Queuing Theory

2 Vocabulary

• I/O In the context of operating systems, input/output (I/O) consists of the processes by which
the operating system receives and transmits data to connected devices.

• Controller The operating system performs the actual I/O operations by communicating with a
device controller, which contains addressable memory and registers for communicating with the
CPU, and an interface for communicating with the underlying hardware. Communication may be
done via programmed I/O, transferring data through registers, or Direct Memory Access, which
allows the controller to write directly to memory.

• Interrupt One method of notifying the operating system of a pending I/O operation is to send a
interrupt, causing an interrupt handler for that event to be run. This requires a lot of overhead,
but is suitable for handling sporadic, infrequent events.

• Polling Another method of notifying the operating system of a pending I/O operating is simply
to have the operating system check regularly if there are any input events. This requires less
overhead, and is suitable for regular events, such as mouse input.

• Response Time Response time measures the time between a requested I/O operating and its
completion, and is an important metric for determining the performance of an I/O device.

• Throughput Another important metric is throughput, which measures the rate at which opera-
tions are performed over time.

• Asynchronous I/O For I/O operations, we can have the requesting process sleep until the op-
eration is complete, or have the call return immediately and have the process continue execution
and later notify the process when the operation is complete.

• Simple File System - The disk is treated as a big array. At the beginning of the disk is the
Table of Content (TOC) field, followed by data field. Files are stored in data field contiguously,
but there can be unused space between files. In the TOC field, there are limited chunks of file
description entries, with each entry describing the name, start location and size of a file.

Pros and Cons

The main advantage of this implementation is simplicity. Whenever there is a new file created, a
continuous space on disk is allocated for that file, which makes I/O (read and write) operations
much faster.

However, this implementation also has many disadvantages. First of all, it has external fragmen-
tation problem. Because only continuous space can be utilized, it may come to the situation that
there is enough free space in sum, but none of the continuous space is large enough to hold the
whole file. Second, once a file is created, it cannot be easily extended because the space after this
file may already be occupied by another file. Third, there is no hierarchy of directories and no
notion of file type.

• External Fragmentation - External fragmentation is the phenomenon in which free storage
becomes divided into many small pieces over time. It occurs when an application allocates and
deallocates regions of storage of varying sizes, and the allocation algorithm responds by leaving the
allocated and deallocated regions interspersed. The result is that although free storage is available,
it is effectively unusable because it is divided into pieces that are too small to satisfy the demands
of the application.

• Internal Fragmentation - Internal fragmentation is the space wasted inside of allocated memory
blocks because of the restriction on the minimum allowed size of allocated blocks.

4

CS 162 Fall 2018 Section 10: Intro to I/O, Device Drivers, File Systems, FAT, and Queuing Theory

• FAT - In FAT, the disk space is still viewed as an array. The very first field of the disk is the boot
sector, which contains essential information to boot the computer. A super block, which is fixed
sized and contains the metadata of the file system, sits just after the boot sector. It is immediately
followed by a file allocation table (FAT). The last section of the disk space is the data section,
consisting of small blocks with size of 4 KiB.

In FAT, a file is viewed as a linked list of data blocks. Instead of having a “next block pointer”
in each data block to make up the linked list, FAT stores these pointers in the entries of the file
allocation table, so that the data blocks can contain 100% data. There is a 1-to-1 correspondence
between FAT entries and data blocks. Each FAT entry stores a data block index. Their meaning
is interpreted as:

If N > 0, N is the index of next block

If N = 0, it means that this is the end of a file

If N = −1, it means this block is free

Thus, a file can be stored in a non-continuous pattern in FAT. The maximum internal fragmentation
equals to 4095 bytes (4K bytes - 1 byte).

Directory in the FAT is a file that contains directory entries. The format of directory entries look
as follows:

Name — Attributes — Index of 1st block — Size

Pros and Cons

Now we have a review of the pros and cons about FAT. Readers will find most of the following
features have been already talked about above. So we only give a very simple list of these features.

Pros: no external fragmentation, can grow file size, has hierarchy of directories

Cons: no pre-allocation, disk space allocation is not contiguous (accordingly read and write oper-
ations will slow), assume File Allocation Table fits in RAM. Otherwise lseek and extending a file
would take intolerably long time due to frequent memory operation.

• Queuing Theory Here are some useful symbols: (both the symbols used in lecture and in the
book are listed)

– µ is the average service rate (jobs per second)

– Tser or S is the average service time, so Tser = 1
µ

– λ is the average arrival rate (jobs per second)

– U or u or ρ is the utilization (fraction from 0 to 1), so U = λ
µ = λS

– Tq or W is the average queuing time (aka waiting time) which is how much time a task needs
to wait before getting serviced (it does not include the time needed to actually perform the
task)

– Tsys or R is the response time, and it’s equal to Tq + Tser or W + S

– Lq or Q is the average length of the queue, and it’s equal to λTq (this is Little’s law)

5

CS 162 Fall 2018 Section 10: Intro to I/O, Device Drivers, File Systems, FAT, and Queuing Theory

3 Problems

3.1 Disabling Interrupts

We looked at disabling CPU interrupts as a simple way to create a critical section in the kernel. Name
a drawback of this approach when it comes to I/O devices.

You can’t receive interrupts from devices or timers within a critical section now. For instance, what
if you accidentally have an infinite loop in the kernel critical section?

3.2 Disks

What are the major components of disk latency? Explain each one.

Queuing time - How long it spends in the OS queue

Controller - How long it takes to send the message to the controller

Seek - How long the disk head has to move

Rotational - How long the disk rotates for

Transfer - The delay of copying the bytes into memory

In class we said that the operating system deals with bad or corrupted sectors. Some disk controllers
magically hide failing sectors and re-map to back-up locations on disk when a sector fails.

If you had to choose where to lay out these back-up sectors on disk - where would you put them?
Why?

Should spread them out evenly, so when you replace an arbitrary sector your find one that is close
by.

How do you think that the disk controller can check whether a sector has gone bad?

Using a checksum - this can be efficiently checked in hardware during disk access.

Can you think of any drawbacks of hiding errors like this from the operating system?

Excessive sector failures are warning signs that a disk is beginning to fail.

6

CS 162 Fall 2018 Section 10: Intro to I/O, Device Drivers, File Systems, FAT, and Queuing Theory

3.3 FAT

What does it mean to format a FAT file system? Approximately how many bytes of data need to be
written in order to format a 2GiB flash drive (with 4KiB blocks and a FAT entry size of 4 bytes) using
the FAT file system?

Formatting a FAT file system means resetting the file allocation table (mark all blocks as free). The
actual data can be zero-ed out for additional security, but it is not required. Formatting a 2GiB
FAT volume will require resetting 219 FAT entries, which will involve approximately 221 bytes (2
MiB).

Your friend (who has never taken an Operating Systems class) wants to format their external hard
drive with the FAT32 file system. The external hard drive will be used to share home videos with your
friend’s family. Give one reason why FAT32 might be the right choice. Then, give one reason why your
friend should consider other options.

FAT32 is supported by many different operating systems, which will make it a good choice for
compatibility if it needs to be used by many users. However, FAT32 has a 4GiB file size limit,
which may prevent your friend from sharing large video files with it.

Explain how an operating system reads a file like “D:\My Files\Video.mp4” from a FAT volume
(from a software point of view).

First, the operating system must know that the FAT volume is mounted as “D:\”. It looks at
the first data block on the FAT volume, which contains the root directory, and searches for a
subdirectory named “My Files”. If necessary, the root directory listing might occupy many blocks,
and the operating system will follow the pointers in the file allocation table to scan through the
entire root directory. Once the subdirectory entry for “My Files” is found, the operating system
searches the subdirectory’s listing for a file named “Video.mp4”. Once it knows the block number
for the file, it can begin reading the file sequentially by following the pointers in the file allocation
table.

Compare bitmap-based allocation of blocks on disk with a free block list.

Bitmap based block allocation is a fixed size proportional to the size of the disk. This means wasted
space when the disk is full. A free block list shrinks as space is used up, so when the disk is full, the
size of the free block list is tiny. However, contiguous allocation is easier to perform with a bitmap.
Most modern file systems use a free block bitmap, not a free block list.

7

CS 162 Fall 2018 Section 10: Intro to I/O, Device Drivers, File Systems, FAT, and Queuing Theory

3.4 Queuing Theory

Explain intuitively why response time is nonlinear with utilization. Draw a plot of utilization (x axis)
vs response time (y axis) and label the endpoints on the x axis.

Even with high utilization (99%), some of the time (1%), the server is idle, which is a waste. All
this wasted time adds up, and in the steady state, the queue becomes very long.
Graph should be linear-ish close to u = 0 and grow asymptotically toward ∞ at u = 1.

If 50 jobs arrive at a system every second and the average response time for any particular job is
100ms, how many jobs are in the system (either queued or being serviced) on average at a particular
moment? Which law describes this relationship?

50× 0.1 = 5 (5 jobs at any time). This is Little’s law.

Is it better to have N queues, each of which is serviced at the rate of 1 job per second, or 1 queue
that is serviced at the rate of N jobs per second? Give reasons to justify your answer.

One server that can process N jobs per millisecond is faster. Better response time (1
N sec vs 1

sec) and better utilization (no load-balancing problems), which gives you lower queuing delays on
average.

What is the average queueing time for a work queue with 1 server, average arrival rate of λ, average
service time S, and squared coefficient of variation of service time C?

Tq = Tser(
u

1−u)(C+1
2) where u = λS

What does it mean if C = 0? What does it mean if C = 1?

If C = 0, then your arrival rate is regular and deterministic, which means that tasks arrive at a
constant rate.
If C = 1, then your arrival rate can be modeled as a Poisson distribution, and the interval between
arrivals can be modeled as a exponential distribution.

8

	Warmup
	Short questions

	Vocabulary
	Problems
	Disabling Interrupts
	Disks
	FAT
	Queuing Theory

