
Section 10: Intro to I/O, Device Drivers, File Systems, FAT, and

Queuing Theory

October 30, 2018

Contents

1 Warmup 2
1.1 Short questions . 2

2 Vocabulary 4

3 Problems 6
3.1 Disabling Interrupts . 6
3.2 Disks . 6
3.3 FAT . 7
3.4 Queuing Theory . 8

1

CS 162 Fall 2018 Section 10: Intro to I/O, Device Drivers, File Systems, FAT, and Queuing Theory

1 Warmup

1.1 Short questions

1. (True/False) If a particular IO device implements a blocking interface, then you will need multiple
threads to have concurrent operations which use that device.

2. (True/False) For IO devices which receive new data very frequently, it is more efficient to interrupt
the CPU than to have the CPU poll the device.

3. (True/False) With SSDs, writing data is straightforward and fast, whereas reading data is complex
and slow.

4. (True/False) User applications have to deal with the notion of file blocks, whereas operating systems
deal with the finer grained notion of disk sectors.

5. How does the OS catch a null pointer exception? Trace every action that happens in the OS based
on what you have learned in cs162 so far.

6. What is a block device? What is a character device? Why might one interface be more appropriate
than the other?

2

CS 162 Fall 2018 Section 10: Intro to I/O, Device Drivers, File Systems, FAT, and Queuing Theory

7. Explain what is meant by “top half” and “bottom half” in the context of device drivers.

3

CS 162 Fall 2018 Section 10: Intro to I/O, Device Drivers, File Systems, FAT, and Queuing Theory

2 Vocabulary

• I/O In the context of operating systems, input/output (I/O) consists of the processes by which
the operating system receives and transmits data to connected devices.

• Controller The operating system performs the actual I/O operations by communicating with a
device controller, which contains addressable memory and registers for communicating with the
CPU, and an interface for communicating with the underlying hardware. Communication may be
done via programmed I/O, transferring data through registers, or Direct Memory Access, which
allows the controller to write directly to memory.

• Interrupt One method of notifying the operating system of a pending I/O operation is to send a
interrupt, causing an interrupt handler for that event to be run. This requires a lot of overhead,
but is suitable for handling sporadic, infrequent events.

• Polling Another method of notifying the operating system of a pending I/O operating is simply
to have the operating system check regularly if there are any input events. This requires less
overhead, and is suitable for regular events, such as mouse input.

• Response Time Response time measures the time between a requested I/O operating and its
completion, and is an important metric for determining the performance of an I/O device.

• Throughput Another important metric is throughput, which measures the rate at which opera-
tions are performed over time.

• Asynchronous I/O For I/O operations, we can have the requesting process sleep until the op-
eration is complete, or have the call return immediately and have the process continue execution
and later notify the process when the operation is complete.

• Simple File System - The disk is treated as a big array. At the beginning of the disk is the
Table of Content (TOC) field, followed by data field. Files are stored in data field contiguously,
but there can be unused space between files. In the TOC field, there are limited chunks of file
description entries, with each entry describing the name, start location and size of a file.

Pros and Cons

The main advantage of this implementation is simplicity. Whenever there is a new file created, a
continuous space on disk is allocated for that file, which makes I/O (read and write) operations
much faster.

However, this implementation also has many disadvantages. First of all, it has external fragmen-
tation problem. Because only continuous space can be utilized, it may come to the situation that
there is enough free space in sum, but none of the continuous space is large enough to hold the
whole file. Second, once a file is created, it cannot be easily extended because the space after this
file may already be occupied by another file. Third, there is no hierarchy of directories and no
notion of file type.

• External Fragmentation - External fragmentation is the phenomenon in which free storage
becomes divided into many small pieces over time. It occurs when an application allocates and
deallocates regions of storage of varying sizes, and the allocation algorithm responds by leaving the
allocated and deallocated regions interspersed. The result is that although free storage is available,
it is effectively unusable because it is divided into pieces that are too small to satisfy the demands
of the application.

• Internal Fragmentation - Internal fragmentation is the space wasted inside of allocated memory
blocks because of the restriction on the minimum allowed size of allocated blocks.

4

CS 162 Fall 2018 Section 10: Intro to I/O, Device Drivers, File Systems, FAT, and Queuing Theory

• FAT - In FAT, the disk space is still viewed as an array. The very first field of the disk is the boot
sector, which contains essential information to boot the computer. A super block, which is fixed
sized and contains the metadata of the file system, sits just after the boot sector. It is immediately
followed by a file allocation table (FAT). The last section of the disk space is the data section,
consisting of small blocks with size of 4 KiB.

In FAT, a file is viewed as a linked list of data blocks. Instead of having a “next block pointer”
in each data block to make up the linked list, FAT stores these pointers in the entries of the file
allocation table, so that the data blocks can contain 100% data. There is a 1-to-1 correspondence
between FAT entries and data blocks. Each FAT entry stores a data block index. Their meaning
is interpreted as:

If N > 0, N is the index of next block

If N = 0, it means that this is the end of a file

If N = −1, it means this block is free

Thus, a file can be stored in a non-continuous pattern in FAT. The maximum internal fragmentation
equals to 4095 bytes (4K bytes - 1 byte).

Directory in the FAT is a file that contains directory entries. The format of directory entries look
as follows:

Name — Attributes — Index of 1st block — Size

Pros and Cons

Now we have a review of the pros and cons about FAT. Readers will find most of the following
features have been already talked about above. So we only give a very simple list of these features.

Pros: no external fragmentation, can grow file size, has hierarchy of directories

Cons: no pre-allocation, disk space allocation is not contiguous (accordingly read and write oper-
ations will slow), assume File Allocation Table fits in RAM. Otherwise lseek and extending a file
would take intolerably long time due to frequent memory operation.

• Queuing Theory Here are some useful symbols: (both the symbols used in lecture and in the
book are listed)

– µ is the average service rate (jobs per second)

– Tser or S is the average service time, so Tser = 1
µ

– λ is the average arrival rate (jobs per second)

– U or u or ρ is the utilization (fraction from 0 to 1), so U = λ
µ = λS

– Tq or W is the average queuing time (aka waiting time) which is how much time a task needs
to wait before getting serviced (it does not include the time needed to actually perform the
task)

– Tsys or R is the response time, and it’s equal to Tq + Tser or W + S

– Lq or Q is the average length of the queue, and it’s equal to λTq (this is Little’s law)

5

CS 162 Fall 2018 Section 10: Intro to I/O, Device Drivers, File Systems, FAT, and Queuing Theory

3 Problems

3.1 Disabling Interrupts

We looked at disabling CPU interrupts as a simple way to create a critical section in the kernel. Name
a drawback of this approach when it comes to I/O devices.

3.2 Disks

What are the major components of disk latency? Explain each one.

In class we said that the operating system deals with bad or corrupted sectors. Some disk controllers
magically hide failing sectors and re-map to back-up locations on disk when a sector fails.

If you had to choose where to lay out these back-up sectors on disk - where would you put them?
Why?

How do you think that the disk controller can check whether a sector has gone bad?

Can you think of any drawbacks of hiding errors like this from the operating system?

6

CS 162 Fall 2018 Section 10: Intro to I/O, Device Drivers, File Systems, FAT, and Queuing Theory

3.3 FAT

What does it mean to format a FAT file system? Approximately how many bytes of data need to be
written in order to format a 2GiB flash drive (with 4KiB blocks and a FAT entry size of 4 bytes) using
the FAT file system?

Your friend (who has never taken an Operating Systems class) wants to format their external hard
drive with the FAT32 file system. The external hard drive will be used to share home videos with your
friend’s family. Give one reason why FAT32 might be the right choice. Then, give one reason why your
friend should consider other options.

Explain how an operating system reads a file like “D:\My Files\Video.mp4” from a FAT volume
(from a software point of view).

Compare bitmap-based allocation of blocks on disk with a free block list.

7

CS 162 Fall 2018 Section 10: Intro to I/O, Device Drivers, File Systems, FAT, and Queuing Theory

3.4 Queuing Theory

Explain intuitively why response time is nonlinear with utilization. Draw a plot of utilization (x axis)
vs response time (y axis) and label the endpoints on the x axis.

If 50 jobs arrive at a system every second and the average response time for any particular job is
100ms, how many jobs are in the system (either queued or being serviced) on average at a particular
moment? Which law describes this relationship?

Is it better to have N queues, each of which is serviced at the rate of 1 job per second, or 1 queue
that is serviced at the rate of N jobs per second? Give reasons to justify your answer.

What is the average queueing time for a work queue with 1 server, average arrival rate of λ, average
service time S, and squared coefficient of variation of service time C?

What does it mean if C = 0? What does it mean if C = 1?

8

	Warmup
	Short questions

	Vocabulary
	Problems
	Disabling Interrupts
	Disks
	FAT
	Queuing Theory

