
Section 11: File Systems and Reliability, Two Phase Commit

CS162

November 6, 2018

Contents

1 Warmup 2

2 Vocabulary 3

3 Problems 5
3.1 Extending an inode . 5
3.2 Network Layering and Fundamentals . 7
3.3 A Simple 2PC . 7

1

CS 162 Fall 2018 Section 11: File Systems and Reliability, Two Phase Commit

1 Warmup

What are the ACID properties? Explain each one and discuss the implications of a system without that
property.

Name 2 different RAID levels that offer redundancy. For each level, explain how a recovery program
could recover data from a degraded array.

Explain the difference between a hard link and a soft link (symbolic link).

How could you implement hard links for the FAT file system? What problem would you encounter?

What is a journaled file system? Explain the purpose of the file system’s “journal”.

Discuss the advantages and drawbacks of memory mapped file accesses compared to traditional disk
accesses for small random file reads and writes to many files of varying size.

2

CS 162 Fall 2018 Section 11: File Systems and Reliability, Two Phase Commit

2 Vocabulary

• Memory-Mapped File A memory-mapped file is a segment of virtual memory which has been
assigned a direct byte-for-byte correlation with some portion of a file or file-like resource. This
resource is typically a file that is physically present on-disk, but can also be a device, shared memory
object, or other resource that the operating system can reference through a file descriptor. Once
present, this correlation between the file and the memory space permits applications to treat the
mapped portion as if it were primary memory.

• Memory-Mapped I/O Memory-mapped I/O (not to be confused with memory-mapped file I/O)
uses the same address bus to address both memory and I/O devices the memory and registers of
the I/O devices are mapped to (associated with) address values. So when an address is accessed
by the CPU, it may refer to a portion of physical RAM, but it can also refer to memory of the
I/O device. Thus, the CPU instructions used to access the memory can also be used for accessing
devices.

• inode - An inode is the data structure that describes the metadata of a file or directory. Each
inode contains several metadata fields, including the owner, file size, modification time, file mode,
and reference count. Each inode also contains several data block pointers, which help the file
system locate the file’s data blocks.

Each inode typically has 12 direct block pointers, 1 singly indirect block pointer, 1 doubly indirect
block pointer, and 1 triply indirect block pointer. Every direct block pointer directly points to a
data block. The singly indirect block pointer points to a block of pointers, each of which points
to a data block. The doubly indirect block pointer contains another level of indirection, and the
triply indirect block pointer contains yet another level of indirection.

• Unix File System (Fast File System) - Most files are small in size, but disk storage is mostly
used up by a few large files. The Unix File System was designed with this in mind and uses an
inode based structure to allow for files very small in size that can scale up to larger if necessary.
To allow for easier allocation of contiguous blocks within a file, the UFS uses bitmap allocation.
Lastly, the FFS introduced various allocation and placement policies built on top of UFS.

• Transaction - A transaction is a unit of work within a database management system. Each
transaction is treated as an indivisible unit which executes independently from other transactions.
The ACID properties are usually used to describe reliable transactions.

• ACID - An acronym standing for the four key properties of a reliable transaction.

Atomicity - the transaction must either occur in its entirety, or not at all.

Consistency - transactions must take data from one consistent state to another, and cannot com-
promise data integrity or leave data in an intermediate state.

Isolation - concurrent transactions should not interfere with each other; it should appear as if all
transactions are serialized.

Durability - the effect of a committed transaction should persist despite crashes.

• Idempotent - An idempotent operation is an operation that can be repeated without effect after
the first iteration.

• Logging file system - A logging file system (or journaling file system) is a file system in which
all updates are performed via a transaction log (“journal”) to ensure consistency, in case the
system crashes or loses power. Each file system transaction is first written to an append-only
redo log. Then, the transaction can be committed to disk. In the event of a crash, a file system
recovery program can scan the journal and re-apply any transactions that may not have completed

3

CS 162 Fall 2018 Section 11: File Systems and Reliability, Two Phase Commit

successfully. Each transaction must be idempotent, so the recovery program can safely re-apply
them.

• TPC/2PC - Two Phase Commit is an algorithm that coordinates transactions between one coor-
dinator (Master) and many slaves. Transactions that change the state of the slave are considered
TPC transactions and must be logged and tracked according to the TPC algorithm. TPC ensures
atomicity and durability by ensuring that a write happens across ALL replicas or NONE of them.
The replication factor indicates how many different slaves a particular entry is copied among. The
sequence of message passing is as follows:

for every slave replica and an ACTION from the master,

origin [MESSAGE] -> dest :

MASTER [VOTE-REQUEST(ACTION)] -> SLAVE

SLAVE [VOTE-ABORT/COMMIT] -> MASTER

MASTER [GLOBAL-COMMIT/ABORT] -> SLAVE

SLAVE [ACK] -> MASTER

If at least one slave votes to abort, the master sends a GLOBAL-ABORT. If all slaves vote to
commit, the master sends GLOBAL-COMMIT. Whenever a master receives a response from a
slave, it may assume that the previous request has been recognized and committed to log and is
therefore fault tolerant. (If the master receives a VOTE, the master can assume that the slave has
logged the action it is voting on. If the master receives an ACK for a GLOBAL-COMMIT, it can
assume that action has been executed, saved, and logged such that it will remain consistent even
if the slave dies and rebuilds.)

4

CS 162 Fall 2018 Section 11: File Systems and Reliability, Two Phase Commit

3 Problems

3.1 Extending an inode

Consider the following inode_disk struct, which is used on a disk with a 512 byte block size.

/* Definition of block_sector_t */

typedef uint32_t block_sector_t;

/* Contents of on-disk inode. Must be exactly 512 bytes long. */

struct inode_disk

{

off_t length; /* File size in bytes. */

block_sector_t direct[12]; /* 12 direct pointers */

block_sector_t indirect; /* a singly indirect pointer */

uint32_t unused[114]; /* Not used. */

};

Why isn’t the file name stored inside the inode_disk struct?

What is the maximum file size supported by this inode design?

How would you design the in-memory representation of the indirect block? (e.g. the disk sector that
corresponds to an inode’s indirect member)

Implement the following function, which changes the size of an inode. If the resize operation fails,
the inode should be unchanged and the function should return false. Use the value 0 for unallocated
block pointers. You do not need to write the inode itself back to disk. You can use these functions:

• “block_sector_t block_allocate()” – Allocates a disk block and returns the sector number. If
the disk is full, then returns 0.

• “void block_free(block_sector_t n)” – Free a disk block.

• “void block_read(block_sector_t n, uint8_t buffer[512])” – Reads the contents of a disk
sector into a buffer.

• “void block_write(block_sector_t n, uint8_t buffer[512])” – Writes the contents of a
buffer into a disk sector.

5

CS 162 Fall 2018 Section 11: File Systems and Reliability, Two Phase Commit

bool inode_resize(struct inode_disk *id, off_t size) {

block_sector_t sector; // A variable that may be useful.

}

6

CS 162 Fall 2018 Section 11: File Systems and Reliability, Two Phase Commit

3.2 Network Layering and Fundamentals

What is the purpose of layering?

What are the 5 basic network layers?

Which layer is responsible for maintaining reliability? Give an example of a protocol at this level
that is reliable.

What is the end-to-end principle?

3.3 A Simple 2PC

Suppose you had a remote storage system composed of a client (you), a single master server, and a single
slave server. All units are separated from each other and communicate using RPC. There is no caching
or local memory; all requests are eventually serviced using the backing store (disk) of the slave. The
slave guards itself against failure by committing entries to a non-volatile log that never gets deleted in
the event of a crash. The system only understands PUT(VALUE) and DEL(VALUE) commands, where
VALUE is an arbitrary string. Calls to DEL on values that dont exist cause the slave to VOTE-ABORT.

Suppose you issue the following sequence of commands. Recall that the correct sequence of message
passing is CLIENT - MASTER - SLAVE - MASTER - CLIENT. Calls to PUT on values that already
exist cause VOTE-ABORT.

- PUT(I LOVE)

- PUT(OPERATING SYSTEMS)

- DEL(I LOVE)

- DEL(I LOVE)

- PUT(GOBEARS)

What is the sequence of messages sent and received by the MASTER server? List communications
with the slave only. Your answer should be a list of the form:

SEND: PUT(XXX)

7

CS 162 Fall 2018 Section 11: File Systems and Reliability, Two Phase Commit

RECIEVE: VOTE-XXX

SEND: DEL(XXX)

...

What is the sequence of messages committed to the log of the slave?

8

	Warmup
	Vocabulary
	Problems
	Extending an inode
	Network Layering and Fundamentals
	A Simple 2PC

