
Section 3: Syscalls and I/O

September 11-12, 2018

Contents

1 Vocabulary 2

2 Problems 3
2.1 Signals . 3

2.1.1 Warmup . 3
2.1.2 Did you really want to quit? . 4

2.2 Files . 4
2.2.1 Files vs File Descriptor . 4
2.2.2 Quick practice with write and seek . 4

2.3 Dup and Dup2 . 5
2.3.1 Warmup . 5
2.3.2 Redirection: executing a process after dup2 . 5
2.3.3 Redirecting in a new process . 6

1

CS 162 Fall 2018 Section 3: Syscalls and I/O

1 Vocabulary

• system call - In computing, a system call is how a program requests a service from an operating
system’s kernel. This may include hardware-related services (for example, accessing a hard disk
drive), creation and execution of new processes, and communication with integral kernel services
such as process scheduling.

• file descriptors - File descriptors are an index into a file-descriptor table stored by the kernel.
The kernel creates a file-descriptor in response to an open call and associates the file-descriptor
with some abstraction of an underlying file-like object; be that an actual hardware device, or a
file-system or something else entirely. Consequently a process’s read or write calls that reference
that file-descriptor are routed to the correct place by the kernel to ultimately do something useful.
Initially when your program starts you have 3 file descriptors.

File Descriptor File
0 stdin
1 stdout
2 stderr

• int open(const char *path, int oflags) - open is a system call that is used to open a new file
and obtain its file descriptor. Initially the offset is 0.

• size t read(int fildes, void *buf, size t nbytes) - read is a system call used to read n bytes
of data into a buffer starting from the file offset. The file offset is incremented by the number of
bytes read.

• size t write(int fildes, const void *buf, size t nbytes) - write is a system call that is used to
write data out of a buffer to the file offset position. The file offset is incremented by the number
of bytes written.

• size t lseek(int filedes, off t offset, int whence) - lseek is a system call that allows you to
move the offset of a file. There are three options for whence

– SEEK SET - The offset is set to offset.

– SEEK CUR - The offset is set to current offset + offset

– SEEK END - The offset is set to the size of the file + offset

• int dup(int fildes) - creates an alias for the provided file descriptor. dup always uses the smallest
available file descriptor. Thus, if we called dup first thing in our program, then you could write
to standard output by using file descriptor 3 (dup uses 3 because 0, 1, and 2 are already signed to
stdin, stdout, stderr). You can determine the value of the new file descriptor by saving the return
value from dup.

• int dup2(int fildes, int fildes2) - dup2 is a system call similar to dup. It duplicates one file
descriptor, making them aliases, and then deleting the old file descriptor. This becomes very useful
when attempting to redirect output, as it automatically takes care of closing the old file descrip-
tor, performing the redirection in one elegant command. For example, if you wanted to redirect
standard output to a file, then you would simply call dup2, providing the open file descriptor for
the file as the first command and 1 (standard output) as the second command.

• Signals - A signal is a software interrupt, a way to communicate information to a process about
the state of other processes, the operating system, and the hardware. A signal is an interrupt in
the sense that it can change the flow of the program when a signal is delivered to a process, the
process will stop what its doing, either handle or ignore the signal, or in some cases terminate,
depending on the signal.

2

CS 162 Fall 2018 Section 3: Syscalls and I/O

• int signal(int signum, void (*handler)(int)) - signal() is the primary system call for signal
handling, which given a signal and function, will execute the function whenever the signal is
delivered. This function is called the signal handler because it handles the signal.

• SIG IGN, SIG DFL Usually the second argument to signal takes a user defined handler for the
signal. However, if you’d like your process to drop the signal you can use SIG IGN. If you’d like
your process to do the default behavior for the signal use SIG DFL.

2 Problems

2.1 Signals

The following is a list of standard Linux signals:

Signal Value Action Comment

--

SIGHUP 1 Terminate Hangup detected on controlling terminal

or death of controlling process

SIGINT 2 Terminate Interrupt from keyboard (Ctrl - c)

SIGQUIT 3 Core Dump Quit from keyboard (Ctrl - \)

SIGILL 4 Core Dump Illegal Instruction

SIGABRT 6 Core Dump Abort signal from abort(3)

SIGFPE 8 Core Dump Floating point exception

SIGKILL 9 Terminate Kill signal

SIGSEGV 11 Core Dump Invalid memory reference

SIGPIPE 13 Terminate Broken pipe: write to pipe with no

readers

SIGALRM 14 Terminate Timer signal from alarm(2)

SIGTERM 15 Terminate Termination signal

SIGUSR1 30,10,16 Terminate User-defined signal 1

SIGUSR2 31,12,17 Terminate User-defined signal 2

SIGCHLD 20,17,18 Ignore Child stopped or terminated

SIGCONT 19,18,25 Continue Continue if stopped

SIGSTOP 17,19,23 Stop Stop process

SIGTSTP 18,20,24 Stop Stop typed at tty

SIGTTIN 21,21,26 Stop tty input for background process

SIGTTOU 22,22,27 Stop tty output for background process

2.1.1 Warmup

How do we stop the following program?

int main(){

signal(SIGINT, SIG_IGN);

while(1);

}

We have to use Ctrl-\ (SIGQUIT) to quit the program. SIGQUIT terminates and dumps the core.

3

CS 162 Fall 2018 Section 3: Syscalls and I/O

2.1.2 Did you really want to quit?

Fill in the blanks for the following function using syscalls such that when we type Ctrl-C, the user is
prompted with a message: “Do you really want to quit [y/n]? ”, and if “y” is typed, the program quits.
Otherwise, it continues along.

void sigint_handler(int sig)

{

char c;

printf(Ouch, you just hit Ctrl-C?. Do you really want to quit [y/n]?);

c = getchar();

if (c == "y" || c = "Y")

exit(0);

}

int main() {

signal(SIGINT, sigint_handler);

...

}

2.2 Files

2.2.1 Files vs File Descriptor

What’s the difference between fopen and open?

fopen is implemented in libc whereas open is a syscall. fopen will use open

in it’s implementation. fopen will return a FILE * and open will return an int.

The FILE * object allows you to call utility methods from

stdio.h like fscanf. Also the FILE * object comes with some library

level buffering of writes.

| libc |

| syscall |

2.2.2 Quick practice with write and seek

What will the test.txt file look like after I run this program? (Hint: if you write at an offset past the
end of file, the bytes inbetween the end of the file and the offset will be set to 0.)

int main() {

char buffer[200];

memset(buffer, ’a’, 200);

int fd = open("test.txt", O_CREAT|O_RDWR);

write(fd, buffer, 200);

lseek(fd, 0, SEEK_SET);

read(fd, buffer, 100);

4

CS 162 Fall 2018 Section 3: Syscalls and I/O

lseek(fd, 500, SEEK_CUR);

write(fd, buffer, 100);

}

The first write gives us 200 bytes of a. Then we seek to the offset 0

and read 100 bytes to get to offset 100. Then we seek to offset

100 + 500 to offset 600. Then we write 100 more bytes of a.

At then end we will have a from 0-200, 0 from 200-600, and a from 600-700

2.3 Dup and Dup2

2.3.1 Warmup

What does C print in the following code?

int main(int argc, char **argv)

{

int pid, status;

int newfd;

if ((newfd = open("output_file.txt", O_CREAT|O_TRUNC|O_WRONLY, 0644)) < 0) {

exit(1);

}

printf("Luke, I am your...\n");

dup2(newfd, 1);

printf("father\n");

exit(0);

}

This prints "Luke, I am your " to standard output. Unfortunately,

"father" gets written to the output_file.txt.

2.3.2 Redirection: executing a process after dup2

Describe what happens, and what the output will be.

int

main(int argc, char **argv)

{

int pid, status;

int newfd;

char *cmd[] = { "/bin/ls", "-al", "/", 0 };

if (argc != 2) {

fprintf(stderr, "usage: %s output_file\n", argv[0]);

exit(1);

}

if ((newfd = open(argv[1], O_CREAT|O_TRUNC|O_WRONLY, 0644)) < 0) {

perror(argv[1]); /* open failed */

5

CS 162 Fall 2018 Section 3: Syscalls and I/O

exit(1);

}

printf("writing output of the command %s to \"%s\"\n", cmd[0], argv[1]);

dup2(newfd, 1);

execvp(cmd[0], cmd);

perror(cmd[0]); /* execvp failed */

exit(1);

}

we get the name of the output file from the command line as before and set that

to be the standard output but now execute a command (ls -al / in this example).

The command sends its output to the standard output stream, which is now

the file that we created.

2.3.3 Redirecting in a new process

Modify the above code such that the result of ls -al is written to the file specified by the input argument
and immediately after ”all done” is printed to the terminal. (Hint: you’ll need to use fork and wait.)

int

main(int argc, char **argv)

{

int pid, status;

int newfd;

char *cmd[] = { "/bin/ls", "-al", "/", 0 };

if ((pid = fork()) < 0) {

perror();

exit(1);

}

if (pid == 0) {

if (argc != 2) {

fprintf(stderr, "usage: %s output_file\n", argv[0]);

exit(1);

}

if ((newfd = open(argv[1], O_CREAT|O_TRUNC|O_WRONLY, 0644)) < 0) {

perror(argv[1]); /* open failed */

exit(1);

}

printf("writing output of the command %s to \"%s\"\n", cmd[0], argv[1]);

dup2(newfd, 1);

execvp(cmd[0], cmd);

perror(cmd[0]); /* execvp failed */

exit(1);

}

wait(&status);

printf("all done");

exit(0);

}

6

	Vocabulary
	Problems
	Signals
	Warmup
	Did you really want to quit?

	Files
	Files vs File Descriptor
	Quick practice with write and seek

	Dup and Dup2
	Warmup
	Redirection: executing a process after dup2
	Redirecting in a new process

