
Section 4: Threads and Context Switching

CS162

September 18 - 19, 2018

Contents

1 Warmup 2
1.1 Hello World . 2

2 Vocabulary 2

3 Problems 3
3.1 Join . 3
3.2 Stack Allocation . 4
3.3 Heap Allocation . 4
3.4 Threads and Processes . 5
3.5 Context Switching . 6
3.6 Interrupt Handlers . 7
3.7 Pintos Context Switch . 8
3.8 Pintos Interrupt Handler . 9

1

CS 162 Fall 2018 Section 4: Threads and Context Switching

1 Warmup

1.1 Hello World

What does C print in the following code?

void* identify(void* arg) {

pid_t pid = getpid();

printf("My pid is %d\n", pid);

return NULL;

}

int main() {

pthread_t thread;

pthread_create(&thread, NULL, &identify, NULL);

identify(NULL);

return 0;

}

My pid is 2617

Either twice (context switch between create and return) or

once (no context switch; program exits before second thread is run)

2 Vocabulary

• thread - a thread of execution is the smallest unit of sequential instructions that can be scheduled
for execution by the operating system. Multiple threads can share the same address space, but
each thread independently operates using its own program counter.

• pthreads - A POSIX-compliant (standard specified by IEEE) implementation of threads. A
pthread_t is usually just an alias for “unsigned long int”.

• pthread create - Creates and immediately starts a child thread running in the same address space
of the thread that spawned it. The child executes starting from the function specified. Internally,
this is implemented by calling the clone syscall.

/* On success, pthread_create() returns 0; on error, it returns an error

* number, and the contents of *thread are undefined. */

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,

void *(*start_routine) (void *), void *arg);

• pthread join - Waits for a specific thread to terminate, similar to waitpid(3).

/* On success, pthread_join() returns 0; on error, it returns an error number. */

int pthread_join(pthread_t thread, void **retval);

• pthread yield - Equivalent to thread yield() in Pintos. Causes the calling thread to vacate the
CPU and go back into the ready queue without blocking. The calling thread is able to be scheduled
again immediately. This is not the same as an interrupt and will succeed in Pintos even if interrupts
are disabled.

/* On success, pthread_yield() returns 0; on error, it returns an error number. */

int pthread_yield(void);

2

CS 162 Fall 2018 Section 4: Threads and Context Switching

3 Problems

3.1 Join

What does C print in the following code?
(Hint: There may be zero, one, or multiple answers.)

void *helper(void *arg) {

printf("HELPER\n");

return NULL;

}

int main() {

pthread_t thread;

pthread_create(&thread, NULL, &helper, NULL);

pthread_yield();

printf("MAIN\n");

return 0;

}

The output of this program could be "MAIN\nHELPER\n", "HELPER\nMAIN\n" or "MAIN\n".

The actual order could be different each time the program is run.

First, the pthread_yield() does not change the answer, because it provides no

guarantee about what order the print statements execute in.

Second, the helper thread may be preempted at any point (e.g., before or after running

printf()).

Last, the main() function can return without giving enough time

for the helper thread to run, killing the process and all associated threads.

How can we modify the code above to always print out "HELPER" followed by "MAIN"?

Change pthread_yield to pthread_join.

void *helper(void *arg) {

printf("HELPER\n");

return NULL;

}

int main() {

pthread_t thread;

pthread_create(&thread, NULL, &helper, NULL);

pthread_join(thread, NULL);

printf("MAIN\n");

return 0;

}

3

CS 162 Fall 2018 Section 4: Threads and Context Switching

3.2 Stack Allocation

What does C print in the following code?

void *helper(void *arg) {

int *num = (int*) arg;

*num = 2;

return NULL;

}

int main() {

int i = 0;

pthread_t thread;

pthread_create(&thread, NULL, &helper, &i);

pthread_join(thread, NULL);

printf("i is %d\n", i);

return 0;

}

The spawned thread shares the address space with the main thread and has a

pointer to the same memory location, so i is set to 2. "i is 2"

3.3 Heap Allocation

What does C print in the following code?

void *helper(void *arg) {

char *message = (char *) arg;

strcpy(message, "I am the child");

return NULL;

}

int main() {

char *message = malloc(100);

strcpy(message, "I am the parent");

pthread_t thread;

pthread_create(&thread, NULL, &helper, message);

pthread_join(thread, NULL);

printf("%s\n", message);

return 0;

}

"I am the child"

4

CS 162 Fall 2018 Section 4: Threads and Context Switching

3.4 Threads and Processes

What does C print in the following code?
(Hint: There may be zero, one, or multiple answers.)

void *worker(void *arg) {

int *data = (int *) arg;

*data = *data + 1;

printf("Data is %d\n", *data);

return (void *) 42;

}

int data;

int main() {

int status;

data = 0;

pthread_t thread;

pid_t pid = fork();

if (pid == 0) {

pthread_create(&thread, NULL, &worker, &data);

pthread_join(thread, NULL);

} else {

pthread_create(&thread, NULL, &worker, &data);

pthread_join(thread, NULL);

pthread_create(&thread, NULL, &worker, &data);

pthread_join(thread, NULL);

wait(&status);

}

return 0;

}

One of the following is printed out:

"Data is 1"

"Data is 1"

"Data is 2"

"Data is 1"

"Data is 2"

"Data is 1"

How would you retrieve the return value of worker? (e.g. ”42”)

You can use the 2nd argument of pthread_join. For example:

void *v_return_value;

pthread_join(thread, (void**)&v_return_value);

int return_value = (int)v_return_value;

5

CS 162 Fall 2018 Section 4: Threads and Context Switching

3.5 Context Switching

Refer to the “Pintos Context Switch” section at the end of this discussion worksheet to answer these
questions:

How many stacks are involved in a context switch? Identify the purpose of each stack.

There are 2 stacks: the kernel stack of the current thread (shares a single page with

the TCB) and the kernel stack of the next thread.

The value of SWITCH_CUR is 20. The value of SWITCH_NEXT is 24. With this information, please draw
the stack frame of switch_threads for a thread that is about to switch the stack pointer to the next
thread’s stack. Your stack frame should include the arguments cur and next.

pointer to next thread struct "next" (+24)

pointer to current thread struct "cur" (+20)

the return address (+16)

ebx (+12)

ebp (+8)

esi (+4)

edi (+0)

In addition to the code inside switch_threads, what other actions are required to perform a context
switch between 2 user program threads?

The most important missing thing to switch is the page table. A new user program

thread could have a different virtual address space.

You might also mention CPU flags or segment registered. However, it’s possible

that all kernel threads share the same values for these. The interrupt service

routine (ISR) can restore those registers when it returns to the user program.

In order to perform a context switch, the kernel must copy all of a thread’s registers onto the CPU’s
registers. How is the %eip (instruction pointer) register copied onto the CPU? Identify which instruction
is responsible for this.

The "ret" instruction means "pop 4 bytes off the stack and jump to that

location". This is the instruction that applies the thread’s %eip, because

the return address would be some code in the parent frame of switch_threads.

6

CS 162 Fall 2018 Section 4: Threads and Context Switching

3.6 Interrupt Handlers

Refer to the “Pintos Interrupt Handler” section at the end of this discussion worksheet to answer these
questions:

What do the instructions pushal and popal do?

They push and pop all the general-purpose 32-bit x86 registers onto/from the stack.

The interrupt service routine (ISR) must run with the kernel’s stack. Why is this the case? And
which instruction is responsible for switching the stack pointer to the kernel stack?

The user program’s stack pointer may be invalid, or the user program could be

using memory below the stack pointer. The CPU itself will switch the stack to

the kernel stack (either because of an external interrupt, a trap, or a

programmed interrupt). We do not need to write an instruction in the ISR to do

this.

The pushal instruction pushes 8 values onto the stack (32 bytes). With this information, please
draw the stack at the moment when “call intr_handler” is about to be executed.

ds

es

fs

gs

pushal’s 8 general purpose registers

pointer to (%esp + 4)

What is the purpose of the “pushl %esp” instruction that is right before ”call intr_handler”?

It is a pointer to the part of the stack that contains all the registers. In

pintos, this is accessed as the "intr_frame" struct.

Inside the intr_exit function, what would happen if we reversed the order of the 5 pop instructions?

The pop instructions need to be in their current order. They are exactly the

reverse order of the corresponding push instructions, because our stack is

First-In-Last-Out.

7

CS 162 Fall 2018 Section 4: Threads and Context Switching

3.7 Pintos Context Switch

3 #### struct thread *switch_threads (struct thread *cur, struct thread *next);

4 ####

5 #### Switches from CUR, which must be the running thread, to NEXT,

6 #### which must also be running switch_threads(), returning CUR in

7 #### NEXT’s context.

8 ####

9 #### This function works by assuming that the thread we’re switching

10 #### into is also running switch_threads(). Thus, all it has to do is

11 #### preserve a few registers on the stack, then switch stacks and

12 #### restore the registers. As part of switching stacks we record the

13 #### current stack pointer in CUR’s thread structure.

14

15 .globl switch_threads

16 .func switch_threads

17 switch_threads:

18 # Save caller’s register state.

19 #

20 # Note that the SVR4 ABI allows us to destroy %eax, %ecx, %edx,

21 # but requires us to preserve %ebx, %ebp, %esi, %edi. See

22 # [SysV-ABI-386] pages 3-11 and 3-12 for details.

23 #

24 # This stack frame must match the one set up by thread_create()

25 # in size.

26 pushl %ebx

27 pushl %ebp

28 pushl %esi

29 pushl %edi

30

31 # Get offsetof (struct thread, stack).

32 .globl thread_stack_ofs

33 mov thread_stack_ofs, %edx

34

35 # Save current stack pointer to old thread’s stack, if any.

36 movl SWITCH_CUR(%esp), %eax

37 movl %esp, (%eax,%edx,1)

38

39 # Restore stack pointer from new thread’s stack.

40 movl SWITCH_NEXT(%esp), %ecx

41 movl (%ecx,%edx,1), %esp

42

43 # Restore caller’s register state.

44 popl %edi

45 popl %esi

46 popl %ebp

47 popl %ebx

48 ret

49 .endfunc

8

CS 162 Fall 2018 Section 4: Threads and Context Switching

3.8 Pintos Interrupt Handler

1 /**

2 * An example of an entry point that would reside in the interrupt

3 * vector. This entry point is for interrupt number 0x30.

4 */

5 .func intr30_stub

6 intr30_stub:

7 pushl %ebp /* Frame pointer */

8 pushl $0 /* Error code */

9 pushl $0x30 /* Interrupt vector number */

10 jmp intr_entry

11 .endfunc

12 /* Main interrupt entry point.

13

14 An internal or external interrupt starts in one of the

15 intrNN_stub routines, which push the ‘struct intr_frame’

16 frame_pointer, error_code, and vec_no members on the stack,

17 then jump here.

18

19 We save the rest of the ‘struct intr_frame’ members to the

20 stack, set up some registers as needed by the kernel, and then

21 call intr_handler(), which actually handles the interrupt.

22

23 We "fall through" to intr_exit to return from the interrupt.

24 */

25 .func intr_entry

26 intr_entry:

27 /* Save caller’s registers. */

28 pushl %ds

29 pushl %es

30 pushl %fs

31 pushl %gs

32 pushal

33

34 /* Set up kernel environment. */

35 cld /* String instructions go upward. */

36 mov $SEL_KDSEG, %eax /* Initialize segment registers. */

37 mov %eax, %ds

38 mov %eax, %es

39 leal 56(%esp), %ebp /* Set up frame pointer. */

40

41 /* Call interrupt handler. */

42 pushl %esp

43 .globl intr_handler

44 call intr_handler

45 addl $4, %esp

46 .endfunc

9

CS 162 Fall 2018 Section 4: Threads and Context Switching

48 /* Interrupt exit.

49

50 Restores the caller’s registers, discards extra data on the

51 stack, and returns to the caller.

52

53 This is a separate function because it is called directly when

54 we launch a new user process (see start_process() in

55 userprog/process.c). */

56 .globl intr_exit

57 .func intr_exit

58 intr_exit:

59 /* Restore caller’s registers. */

60 popal

61 popl %gs

62 popl %fs

63 popl %es

64 popl %ds

65

66 /* Discard ‘struct intr_frame’ vec_no, error_code,

67 frame_pointer members. */

68 addl $12, %esp

69

70 /* Return to caller. */

71 iret

72 .endfunc

10

	Warmup
	Hello World

	Vocabulary
	Problems
	Join
	Stack Allocation
	Heap Allocation
	Threads and Processes
	Context Switching
	Interrupt Handlers
	Pintos Context Switch
	Pintos Interrupt Handler

