Section 5: Thread Synchronization

CS162
September 25-26, 2018

Contents

1 Warmup
1.1 Thread safety e e

2 Vocabulary

3 Problems
3.1 The Central Galactic Floopy Corporation
3.2 test_and.set L
3.3 Test and test_and_set? L

4 Cache synchronization

CS 162 Spring 2018 Section 5: Thread Synchronization

1 Warmup

1.1 Thread safety
Given a global variable:
int x = 0;

Are these lines of code thread-safe? In other words, can multiple threads run the code at the same time,
without unintended effects? Assume an x86 architecture.

1: printf("x is %d\n", x); 4: int y = x;
2: int *p = malloc(sizeof (x)); 5: x++;
3: x =1; 6: x = rand();
1: It depends on the implementation. Usually guaranteed to be thread-safe.
2: It depends on the implementation. Usually guaranteed to be thread-safe.
3: Thread-safe.
4: Thread-safe.
5: Not thread-safe.
6: It depends on the implementation. Not guaranteed to be thread-safe, but it usually is.

2 Vocabulary

e thread - a thread of execution is the smallest unit of sequential instructions that can be scheduled
for execution by the operating system. Multiple threads can share the same address space, but
each thread independently operates using its own program counter.

e atomic operation - An operation that appears to be indivisible to observers. Atomic operations
must execute to completion or not at all.

e critical section - A section of code that accesses a shared resource and must not be concurrently
run by more than a single thread.

e race condition - A situation whose outcome is dependent on the sequence of execution of multiple
threads running simultaneously.

e lock - A common synchronization primitive. Possible actions are acquire and release. Locks
can be either free or taken. Acquiring a free lock will cause it to become taken. Acquiring a taken
lock will cause the acquirer to stop execution until the lock becomes free. A lock holder can release
a lock to make it free again.

e test_and_set - An atomic operation implemented in hardware. Often used to implement locks
and other synchronization primitives. In this handout, assume the following implementation.

int test_and_set(int *value) {
int result = *value;
*value = 1;
return result;

}

This is more expensive than most other instructions, and it is not preferable to repeatedly execute
this instruction.

CS 162 Spring 2018 Section 5: Thread Synchronization

3 Problems

3.1 The Central Galactic Floopy Corporation

It’s the year 3162. Floopies are the widely recognized galactic currency. Floopies are represented in
digital form only, at the Central Galactic Floopy Corporation (CGFC).

You receive some inside intel from the CGFC that they have a Galaxynet server running on some old
OS called x86 Ubuntu 14.04 LTS. Anyone can send requests to it. Upon receiving a request, the server
forks a POSIX thread to handle the request. In particular, you are told that sending a transfer request
will create a thread that will run the following function immediately, for speedy service.

void transfer(account_t *donor, account_t *recipient, float amount) {
assert (donor != recipient); // Thanks CS161

if (donor->balance < amount) {
printf("Insufficient funds.\n");
return;

}
donor->balance —-= amount;
recipient->balance += amount;

Assume that there is some struct with a member balance that is typedef-ed as account_t.
Describe how a malicious user might exploit some unintended behavior.

There are multiple race conditions here.

Suppose Alice and Bob have 5 floopies each. We send two quick requests: transfer(&alice,
&bob, 5) and transfer(&bob, &alice, 5). The first call decrements Alices balance to 0, adds 5
to Bobs balance, but before storing 10 in Bobs balance, the next call comes in and executes to
completion, decrementing Bobs balance to 0 and making Alices balance 5. Finally we return to the
first call, which just has to store 10 into Bobs balance. In the end, Alice has 5, but Bob now has
10. We have effectively duplicated 5 floopies.

Graphically:

Thread 1 Thread 2

templ = Alice’s balance (== 5)

templ = templ - 5 (== 0)

Alice’s balance = templ (== 0)

templ = Bob’s balance (== 5)

templ = templ + 5 (== 10)

INTERRUPTED BY THREAD 2
temp2 = Bob’s balance (== 5)
temp2 = temp2 - 5 (== 0)
Bob’s balance = temp2 (== 0)
temp2 = Alice’s balance (== 0)
temp2 = temp2 + 5 (== 5)
Alice’s balance = temp2 (== 5)
THREAD 2 COMPLETE

RESUME THREAD 1

Bob’s balance = templ (== 10)

THREAD 1 COMPLETE

It is also possible to achieve a negative balance. Suppose at the beginning of the function, the
donor has enough money to participate in the transfer, so we pass the conditional check for sufficient

CS 162 Spring 2018

funds. Immediately after that, the donors balance is reduced below the required amount by some
other running thread. Then the transfer will go through, resulting in a negative balance for the
donor.

Sending two identical transfer(&alice, &bob, 2) may also cause unintended behavior, since the
increment /decrement operations are not atomic (though it is arguably harder to exploit for profit).

Since you’re a good person who wouldn’t steal floopies from a galactic corporation, what changes would

you suggest to the CGFC to defend against this exploit?

The entire function must be made atomic. One could do this by disabling interrupts for that period
of time (if there is a single processor), or by acquiring a lock beforehand and releasing the lock
afterwards. Alternatively, you could have a lock for each account. In order to prevent deadlocks,
you will have to acquire locks in some predetermined order, such as lowerst account number first.

3.2 test_and_set

In the following code, we use test_and_set to emulate locks.

int value = 0;

int hello

0;

void print_hello() {

}

while (test_and_set(&value));

hello += 1;

printf ("Child thread: %d\n", hello);
value = 0;

pthread_exit (0);

void main() {

}

pthread_t threadl;

pthread_t thread2;

pthread_create(&threadl, NULL, (void *) &print_hello, NULL);
pthread_create(&thread2, NULL, (void *) &print_hello, NULL);
while (test_and_set(&value));

printf ("Parent thread: %d\n", hello);

value = 0;

Assume the following sequence of events:

oot e

Main starts running and creates both threads and is then context switched right after
Thread?2 is scheduled and run until after it increments hello and is context switched
Threadl runs until it is context switched

The thread running main resumes and runs until it get context switched

Thread2 runs to completion

The thread running main runs to completion (but doesn’t exit yet)

Threadl runs to completion

Is this sequence of events possible? Why or why not?

Section 5: Thread Synchronization

CS 162 Spring 2018 Section 5: Thread Synchronization

Yes. In steps 3 and 4, the main thread and threadl make no progress. They can only run to
completion after thread2 resets the value to 0.

At each step where test_and_set (&value) is called, what value(s) does it return?

1. No call to test_and_set
2.0

3. 1,1, ..., 1

4. 1,1, ...,1

5. No call to test_and_set
6.0

7.0

CS 162 Spring 2018 Section 5: Thread Synchronization

Given this sequence of events, what will C print?

Child thread: 1
Parent thread: 1
Child thread: 2

Is this implementation better than using locks? Explain your rationale.

No, this involves a ton of busy waiting.

3.3 Test and test_and _set?

To lower the overhead a more elaborate locking protocol test and test-and-set can be used. The main
idea is not to spin in test-and-set but increase the likelihood of successful test-and-set by spinning until
the lock seems like it is free.

Fill in the rest of the implementation for a test and test_and_set based lock:

int locked = O;
void lock() {
do {
_______________________ // Spin until lock looks empty
} while (test_and_set(&locked));
}

void unlock() {

Is this a better implementation of a lock that just using test_and_set? Why or why not?

void lock() {
do {
while (locked == 1);
} while (test_and_set(&locked));
}

void unlock() {

locked = 0;
}
Yes. This scheme uses normal memory reads to spin while waiting for the lock to become free.
Test_and_set is only used to try to get the lock when normal memory reads say it is free. Thus,
expensive atomic memory operations happen less often.

CS 162 Spring 2018 Section 5: Thread Synchronization

4

Cache synchronization

Let’s say you're building a local cache for Netflix videos at your favorite ISP. Here are some requirements
for your cache:

Your goal is to deliver videos to customers as fast as possible, but use as little of your ISP’s ingress
bandwidth as possible. So, you decide to build a fully associative, multi-threaded cache.

You need to implement these two functions:

— “char *getVideo(int videoID)” — Returns a pointer to the video data (represented as a
byte array).

— “yoid doneWithVideo(int videoID)” — The video needs to remain in the cache while it’s
being streamed to the user, so until we call this second function, doneWithVideo, you cannot
evict the video from the cache.

Your cache should have 1024 entries.
You can use these functions:

— “char *downloadVideoFromInternet(int videoID)” — Download a video from Netflix’s ori-
gin servers. This function takes a while to complete!

— “void free(char *video)” — Free the memory used to hold a video.

You must never return an incomplete half-downloaded video to “getVideo()”. Wait until the
download completes.

Your cache should never hold 2 copies of the same video.
You must be able to download multiple videos from Netflix at the same time.

Once a video is in the cache, it must be able to be streamed to multiple users at the same time.

First, design the struct that you will use for each cache entry. You can add locks or other metadata.
You can also add more global variables, if you need them.

};

struct cacheEntry {

int videolD;
char *video;

// NEW FIELDS
bool downloading;
int users;

Lock cachelLock;
struct cacheEntry CACHE[1024];

CS 162 Spring 2018

Section 5: Thread Synchronization

Next, implement the getVideo function. An implementation has already been provided, but it is

not thread-safe.

char *getVideo(int videoID) {
while (true) {
bool wait_for_download = O0;
do {
lock_acquire(&cacheLock) ;

for (int i = 0; i < 1024; i++) {
if (CACHE[i].videoID == videoID) {

if (!CACHE[i].downloading) {
CACHE[i] .users += 1;
lock_release(&cacheLock) ;
wait_for_download = 0;
return CACHE[i].video;

} else {
wait_for_download = 1;
lock_release(&cacheLock) ;
break;

}
}

} while (wait_for_download);

for (int i = 0; i < 1024; i++) {
if (CACHE[i] .users > 0) {
continue;

if (CACHE[i].video != NULL) {
free(CACHE[i] .video);

}

CACHE[i] .videoID = videolD;

CACHE[i] .users = 1;

CACHE[i] .downloading = true;

lock_release(&cachelLock) ;

CACHE[i] .downloading = false;
return CACHE[i].video;

lock_release(&cachelLock) ;

// Why is this in a for loop? I don’t know.

CACHE[i] .video = downloadVideoFromInternet(videoID);

// All of the slots are in use. Just keep looping.

Finally, implement the doneWithVideo function:

char *doneWithVideo (int videoID) {
lock_acquire (&cacheLock) ;
for (dnt i = 0; i < 1024; i++) {
if (CACHE[i].videoID == videoID) {
CACHE[i] .users -= 1;

CS 162 Spring 2018 Section 5: Thread Synchronization

}
}

lock_release(&cacheLock) ;

	Warmup
	Thread safety

	Vocabulary
	Problems
	The Central Galactic Floopy Corporation
	test_and_set
	Test and test_and_set?

	Cache synchronization

