
Section 5: Thread Synchronization

CS162

September 25-26, 2018

Contents

1 Warmup 2
1.1 Thread safety . 2

2 Vocabulary 2

3 Problems 3
3.1 The Central Galactic Floopy Corporation . 3
3.2 test and set . 4
3.3 Test and test and set? . 6

4 Cache synchronization 7

1

CS 162 Spring 2018 Section 5: Thread Synchronization

1 Warmup

1.1 Thread safety

Given a global variable:

int x = 0;

Are these lines of code thread-safe? In other words, can multiple threads run the code at the same time,
without unintended effects? Assume an x86 architecture.

1: printf("x is %d\n", x); 4: int y = x;

2: int *p = malloc(sizeof(x)); 5: x++;

3: x = 1; 6: x = rand();

2 Vocabulary

• thread - a thread of execution is the smallest unit of sequential instructions that can be scheduled
for execution by the operating system. Multiple threads can share the same address space, but
each thread independently operates using its own program counter.

• atomic operation - An operation that appears to be indivisible to observers. Atomic operations
must execute to completion or not at all.

• critical section - A section of code that accesses a shared resource and must not be concurrently
run by more than a single thread.

• race condition - A situation whose outcome is dependent on the sequence of execution of multiple
threads running simultaneously.

• lock - A common synchronization primitive. Possible actions are acquire and release. Locks
can be either free or taken. Acquiring a free lock will cause it to become taken. Acquiring a taken
lock will cause the acquirer to stop execution until the lock becomes free. A lock holder can release
a lock to make it free again.

• test and set - An atomic operation implemented in hardware. Often used to implement locks
and other synchronization primitives. In this handout, assume the following implementation.

int test_and_set(int *value) {

int result = *value;

*value = 1;

return result;

}

This is more expensive than most other instructions, and it is not preferable to repeatedly execute
this instruction.

2

CS 162 Spring 2018 Section 5: Thread Synchronization

3 Problems

3.1 The Central Galactic Floopy Corporation

It’s the year 3162. Floopies are the widely recognized galactic currency. Floopies are represented in
digital form only, at the Central Galactic Floopy Corporation (CGFC).

You receive some inside intel from the CGFC that they have a Galaxynet server running on some old
OS called x86 Ubuntu 14.04 LTS. Anyone can send requests to it. Upon receiving a request, the server
forks a POSIX thread to handle the request. In particular, you are told that sending a transfer request
will create a thread that will run the following function immediately, for speedy service.

void transfer(account_t *donor, account_t *recipient, float amount) {

assert (donor != recipient); // Thanks CS161

if (donor->balance < amount) {

printf("Insufficient funds.\n");

return;

}

donor->balance -= amount;

recipient->balance += amount;

}

Assume that there is some struct with a member balance that is typedef-ed as account_t.
Describe how a malicious user might exploit some unintended behavior.

Since you’re a good person who wouldn’t steal floopies from a galactic corporation, what changes would
you suggest to the CGFC to defend against this exploit?

3

CS 162 Spring 2018 Section 5: Thread Synchronization

3.2 test and set

In the following code, we use test and set to emulate locks.

int value = 0;

int hello = 0;

void print_hello() {

while (test_and_set(&value));

hello += 1;

printf("Child thread: %d\n", hello);

value = 0;

pthread_exit(0);

}

void main() {

pthread_t thread1;

pthread_t thread2;

pthread_create(&thread1, NULL, (void *) &print_hello, NULL);

pthread_create(&thread2, NULL, (void *) &print_hello, NULL);

while (test_and_set(&value));

printf("Parent thread: %d\n", hello);

value = 0;

}

Assume the following sequence of events:
1. Main starts running and creates both threads and is then context switched right after
2. Thread2 is scheduled and run until after it increments hello and is context switched
3. Thread1 runs until it is context switched
4. The thread running main resumes and runs until it get context switched
5. Thread2 runs to completion
6. The thread running main runs to completion (but doesn’t exit yet)
7. Thread1 runs to completion

Is this sequence of events possible? Why or why not?

At each step where test_and_set(&value) is called, what value(s) does it return?

4

CS 162 Spring 2018 Section 5: Thread Synchronization

Given this sequence of events, what will C print?

Is this implementation better than using locks? Explain your rationale.

3.3 Test and test and set?

To lower the overhead a more elaborate locking protocol test and test-and-set can be used. The main
idea is not to spin in test-and-set but increase the likelihood of successful test-and-set by spinning until
the lock seems like it is free.
Fill in the rest of the implementation for a test and test and set based lock:

int locked = 0;

void lock() {

do {

_______________________ // Spin until lock looks empty

} while (test_and_set(&locked));

}

void unlock() {

}

Is this a better implementation of a lock that just using test and set? Why or why not?

5

CS 162 Spring 2018 Section 5: Thread Synchronization

4 Cache synchronization

Let’s say you’re building a local cache for Netflix videos at your favorite ISP. Here are some requirements
for your cache:

• Your goal is to deliver videos to customers as fast as possible, but use as little of your ISP’s ingress
bandwidth as possible. So, you decide to build a fully associative, multi-threaded cache.

• You need to implement these two functions:

– “char *getVideo(int videoID)” – Returns a pointer to the video data (represented as a
byte array).

– “void doneWithVideo(int videoID)” – The video needs to remain in the cache while it’s
being streamed to the user, so until we call this second function, doneWithVideo, you cannot
evict the video from the cache.

• Your cache should have 1024 entries.

• You can use these functions:

– “char *downloadVideoFromInternet(int videoID)” – Download a video from Netflix’s ori-
gin servers. This function takes a while to complete!

– “void free(char *video)” – Free the memory used to hold a video.

• You must never return an incomplete half-downloaded video to “getVideo()”. Wait until the
download completes.

• Your cache should never hold 2 copies of the same video.

• You must be able to download multiple videos from Netflix at the same time.

• Once a video is in the cache, it must be able to be streamed to multiple users at the same time.

First, design the struct that you will use for each cache entry. You can add locks or other metadata.
You can also add more global variables, if you need them.

struct cache_entry {

int videoID;

char *video;

};

struct cache_entry CACHE[1024];

6

CS 162 Spring 2018 Section 5: Thread Synchronization

Next, implement the getVideo function. An implementation has already been provided, but it is
not thread-safe.

char *getVideo(int videoID) {

for (int i = 0; i < 1024; i++) {

if (CACHE[i].videoID == videoID) {

return CACHE[i].video;

}

}

for (int i = 0; i < 1024; i++) {

// Why is this in a for loop? I don’t know.

if (CACHE[i].video != NULL) {

free(CACHE[i].video);

}

CACHE[i].videoID = videoID;

CACHE[i].video = downloadVideoFromInternet(videoID);

return CACHE[i].video;

}

}

7

CS 162 Spring 2018 Section 5: Thread Synchronization

Finally, implement the doneWithVideo function:

char *doneWithVideo(int videoID) {

}

8

	Warmup
	Thread safety

	Vocabulary
	Problems
	The Central Galactic Floopy Corporation
	test_and_set
	Test and test_and_set?

	Cache synchronization

