
CS162
Operating Systems and
Systems Programming

Lecture 19

File Systems (Con’t),
MMAP, Transactions, COW

April 8th, 2015
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 19.24/8/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Building a File System
• File System: Layer of OS that transforms block

interface of disks (or other block devices) into Files,
Directories, etc.

• File System Components
– Disk Management: collecting disk blocks into files
– Naming: Interface to find files by name, not by blocks
– Protection: Layers to keep data secure
– Reliability/Durability: Keeping of files durable despite
crashes, media failures, attacks, etc

• User vs. System View of a File
– User’s view:

» Durable Data Structures
– System’s view (system call interface):

» Collection of Bytes (UNIX)
» Doesn’t matter to system what kind of data structures you

want to store on disk!
– System’s view (inside OS):

» Collection of blocks (a block is a logical transfer unit, while
a sector is the physical transfer unit)

» Block size  sector size; in UNIX, block size is 4KB

Lec 19.34/8/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Characteristics of Files

• Most files are small
• Most of the space is occupied

by the rare big ones

Lec 19.44/8/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Multilevel Indexed Files (Original 4.1 BSD)
• Sample file in multilevel

indexed format:
– 10 direct ptrs, 1K blocks
– How many accesses for
block #23? (assume file
header accessed on open)?

» Two: One for indirect block,
one for data

– How about block #5?
» One: One for data

– Block #340?
» Three: double indirect block,

indirect block, and data
• UNIX 4.1 Pros and cons

– Pros: Simple (more or less)
Files can easily expand (up to a point)
Small files particularly cheap and easy

– Cons: Lots of seeks
Very large files must read many indirect block (four
I/Os per block!)

Lec 19.54/8/15 Kubiatowicz CS162 ©UCB Spring 2015

UNIX BSD 4.2
• Same as BSD 4.1 (same file header and triply indirect

blocks), except incorporated ideas from Cray DEMOS:
– Uses bitmap allocation in place of freelist
– Attempt to allocate files contiguously
– 10% reserved disk space
– Skip-sector positioning (mentioned next slide)

• Problem: When create a file, don’t know how big it
will become (in UNIX, most writes are by appending)

– How much contiguous space do you allocate for a file?
– In BSD 4.2, just find some range of free blocks

» Put each new file at the front of different range
» To expand a file, you first try successive blocks in

bitmap, then choose new range of blocks
– Also in BSD 4.2: store files from same directory near
each other

• Fast File System (FFS)
– Allocation and placement policies for BSD 4.2

Lec 19.64/8/15 Kubiatowicz CS162 ©UCB Spring 2015

Attack of the Rotational Delay
• Problem 2: Missing blocks due to rotational delay

– Issue: Read one block, do processing, and read next
block. In meantime, disk has continued turning: missed
next block! Need 1 revolution/block!

– Solution1: Skip sector positioning (“interleaving”)
» Place the blocks from one file on every other block of a

track: give time for processing to overlap rotation
– Solution2: Read ahead: read next block right after first,
even if application hasn’t asked for it yet.

» This can be done either by OS (read ahead)
» By disk itself (track buffers). Many disk controllers have

internal RAM that allows them to read a complete track
• Important Aside: Modern disks+controllers do many

complex things “under the covers”
– Track buffers, elevator algorithms, bad block filtering

Skip Sector

Track Buffer
(Holds complete track)

Lec 19.74/8/15 Kubiatowicz CS162 ©UCB Spring 2015

Where are inodes stored?

• In early UNIX and DOS/Windows’ FAT file
system, headers stored in special array in
outermost cylinders

– Header not stored anywhere near the data blocks.
To read a small file, seek to get header, seek back
to data.

– Fixed size, set when disk is formatted. At
formatting time, a fixed number of inodes were
created (They were each given a unique number,
called an “inumber”)

Lec 19.84/8/15 Kubiatowicz CS162 ©UCB Spring 2015

Where are inodes stored?

• Later versions of UNIX moved the header
information to be closer to the data blocks

– Often, inode for file stored in same “cylinder group”
as parent directory of the file (makes an ls of that
directory run fast).

– Pros:
» UNIX BSD 4.2 puts a portion of the file header array

on each of many cylinders. For small directories, can fit
all data, file headers, etc. in same cylinder  no seeks!

» File headers much smaller than whole block (a few
hundred bytes), so multiple headers fetched from disk at
same time

» Reliability: whatever happens to the disk, you can find
many of the files (even if directories disconnected)

– Part of the Fast File System (FFS)
» General optimization to avoid seeks

Lec 19.94/8/15 Kubiatowicz CS162 ©UCB Spring 2015

4.2 BSD Locality: Block Groups

• File system volume is divided into a
set of block groups

– Close set of tracks
• Data blocks, metadata, and free

space interleaved within block
group

– Avoid huge seeks between user
data and system structure

• Put directory and its files in
common block group

• First-Free allocation of new
file blocks

– To expand file, first try
successive blocks in bitmap, then
choose new range of blocks

– Few little holes at start, big
sequential runs at end of group

– Avoids fragmentation
– Sequential layout for big files

• Important: keep 10% or more free!
– Reserve space in the BG

Lec 19.104/8/15 Kubiatowicz CS162 ©UCB Spring 2015

FFS First Fit Block Allocation

• Fills in the small holes at the start of block group
• Avoids fragmentation, leaves contiguous free space

at end

Lec 19.114/8/15 Kubiatowicz CS162 ©UCB Spring 2015

FFS

• Pros
– Efficient storage for both small and large files
– Locality for both small and large files
– Locality for metadata and data

• Cons
– Inefficient for tiny files (a 1 byte file requires
both an inode and a data block)

– Inefficient encoding when file is mostly contiguous
on disk (no equivalent to superpages)

– Need to reserve 10-20% of free space to prevent
fragmentation

Lec 19.124/8/15 Kubiatowicz CS162 ©UCB Spring 2015

Linux Example: Ext2/3 Disk Layout
• Disk divided into block

groups
– Provides locality
– Each group has two
block-sized bitmaps
(free blocks/inodes)

– Block sizes settable
at format time:
1K, 2K, 4K, 8K…

• Actual Inode structure
similar to 4.2BSD

– with 12 direct pointers
• Ext3: Ext2 w/Journaling

– Several degrees of
protection with more or
less cost • Example: create a file1.dat

under /dir1/ in Ext3

Lec 19.134/8/15 Kubiatowicz CS162 ©UCB Spring 2015

A bit more on directories
• Stored in files, can be read, but typically don’t

– System calls to access directories
– Open / Creat traverse the structure
– mkdir /rmdir add/remove entries
– Link / Unlink

» Link existing file to a directory
• Not in FAT !

» Forms a DAG
• When can file be deleted?

– Maintain ref-count of links to the file
– Delete after the last reference is gone.

• libc support
– DIR * opendir (const char *dirname)
– struct dirent * readdir (DIR *dirstream)
– int readdir_r (DIR *dirstream, struct dirent *entry,

struct dirent **result)

/usr

/usr/lib4.3

/usr/lib4.3/foo

/usr/lib

/usr/lib/foo

Lec 19.144/8/15 Kubiatowicz CS162 ©UCB Spring 2015

Links

• Hard link
– Sets another directory entry to contain the file
number for the file

– Creates another name (path) for the file
– Each is “first class”

• Soft link or Symbolic Link
– Directory entry contains the name of the file
– Map one name to another name

Lec 19.154/8/15 Kubiatowicz CS162 ©UCB Spring 2015

Large Directories: B-Trees (dirhash)

Lec 19.164/8/15 Kubiatowicz CS162 ©UCB Spring 2015

Administrivia

• Midterm II
– Wednesday, 4/22
– Topics up until Monday class (4/20)
– 1 page of hand-written notes, both sides

• HW 4 handed out next Monday

Lec 19.174/8/15 Kubiatowicz CS162 ©UCB Spring 2015

NTFS

• New Technology File System (NTFS)
– Common on Microsoft Windows systems

• Variable length extents
– Rather than fixed blocks

• Everything (almost) is a sequence of
<attribute:value> pairs

– Meta-data and data
• Mix direct and indirect freely
• Directories organized in B-tree structure by default

Lec 19.184/8/15 Kubiatowicz CS162 ©UCB Spring 2015

NTFS

• Master File Table
– DataBase with Flexible 1KB entries for metadata/data
– Variable-sized attribute records (data or metadata)
– Extend with variable depth tree (non-resident)

• Extents – variable length contiguous regions
– Block pointers cover runs of blocks
– Similar approach in Linux (ext4)
– File create can provide hint as to size of file

• Journalling for reliability
– Discussed later

Lec 19.194/8/15 Kubiatowicz CS162 ©UCB Spring 2015

NTFS Small File

Create time, modify time, access time,
Owner id, security specifier, flags (ro, hid, sys)

data attribute

Attribute list

Lec 19.204/8/15 Kubiatowicz CS162 ©UCB Spring 2015

NTFS Medium File

Lec 19.214/8/15 Kubiatowicz CS162 ©UCB Spring 2015

NTFS Multiple Indirect Blocks

Lec 19.224/8/15 Kubiatowicz CS162 ©UCB Spring 2015

Lec 19.234/8/15 Kubiatowicz CS162 ©UCB Spring 2015

• Open system call:
– Resolves file name, finds file control block (inode)
– Makes entries in per-process and system-wide tables
– Returns index (called “file handle”) in open-file table

In-Memory File System Structures

Lec 19.244/8/15 Kubiatowicz CS162 ©UCB Spring 2015

• Read/write system calls:
– Use file handle to locate inode
– Perform appropriate reads or writes

In-Memory File System Structures

Lec 19.254/8/15 Kubiatowicz CS162 ©UCB Spring 2015

Authorization: Who Can Do What?

• How do we decide who is
authorized to do actions in the
system?

• Access Control Matrix: contains
all permissions in the system

– Resources across top
» Files, Devices, etc…

– Domains in columns
» A domain might be a user or a

group of users
» E.g. above: User D3 can read

F2 or execute F3
– In practice, table would be
huge and sparse!

Lec 19.264/8/15 Kubiatowicz CS162 ©UCB Spring 2015

Authorization: Two Implementation Choices
• Access Control Lists: store permissions with object

– Still might be lots of users!
– UNIX limits each file to: r,w,x for owner, group, world
– More recent systems allow definition of groups of users
and permissions for each group

– ACLs allow easy changing of an object’s permissions
» Example: add Users C, D, and F with rw permissions

• Capability List: each process tracks which objects has
permission to touch

– Popular in the past, idea out of favor today
– Consider page table: Each process has list of pages it
has access to, not each page has list of processes …

– Capability lists allow easy changing of a domain’s
permissions

» Example: you are promoted to system administrator and
should be given access to all system files

Lec 19.274/8/15 Kubiatowicz CS162 ©UCB Spring 2015

Authorization: Combination Approach

• Users have capabilities,
called “groups” or “roles”

– Everyone with particular
group access is “equivalent”
when accessing group
resource

– Like passport (which gives
access to country of origin)

• Objects have ACLs
– ACLs can refer to users or

groups
– Change object permissions

object by modifying ACL
– Change broad user

permissions via changes in
group membership

– Possessors of proper
credentials get access

Lec 19.284/8/15 Kubiatowicz CS162 ©UCB Spring 2015

Authorization: How to Revoke?

• How does one revoke someone’s access rights to
a particular object?

– Easy with ACLs: just remove entry from the list
– Takes effect immediately since the ACL is checked
on each object access

• Harder to do with capabilities since they aren’t
stored with the object being controlled:

– Not so bad in a single machine: could keep all
capability lists in a well-known place (e.g., the OS
capability table).

– Very hard in distributed system, where remote
hosts may have crashed or may not cooperate
(more in a future lecture)

Lec 19.294/8/15 Kubiatowicz CS162 ©UCB Spring 2015

Revoking Capabilities

• Various approaches to revoking capabilities:
– Put expiration dates on capabilities and force
reacquisition

– Put epoch numbers on capabilities and revoke all
capabilities by bumping the epoch number (which
gets checked on each access attempt)

– Maintain back pointers to all capabilities that have
been handed out (Tough if capabilities can be
copied)

– Maintain a revocation list that gets checked on
every access attempt

Lec 19.304/8/15 Kubiatowicz CS162 ©UCB Spring 2015

Memory Mapped Files

• Traditional I/O involves explicit transfers
between buffers in process address space to
regions of a file

– This involves multiple copies into caches in memory,
plus system calls

• What if we could “map” the file directly into an
empty region of our address space

– Implicitly “page it in” when we read it
– Write it and “eventually” page it out

• Executable file is treated this way when we exec
the process !!

Lec 19.314/8/15 Kubiatowicz CS162 ©UCB Spring 2015

Recall: Who does what, when?

virtual address

MMU
PT

instruction

physical address
page#

frame#

offsetpage fault

Operating System

exception

Page Fault Handler

load page from disk

update PT entry

Process

scheduler

retry
frame#

offset

Lec 19.324/8/15 Kubiatowicz CS162 ©UCB Spring 2015

Using Paging to mmap files

virtual address

MMU PTinstruction

physical address
page#

frame#

offset
page fault

Process

File

mmap file to region of VAS

Create PT entries
for mapped region
as “backed” by file

Operating System

exception

Page Fault Handler

scheduler

retry

Read File
contents

from memory!

Lec 19.334/8/15 Kubiatowicz CS162 ©UCB Spring 2015

mmap system call

• May map a specific region or let the system find
one for you

– Tricky to know where the holes are
• Used both for manipulating files and for sharing

between processes
Lec 19.344/8/15 Kubiatowicz CS162 ©UCB Spring 2015

An example
#include <sys/mman.h>

int something = 162;

int main (int argc, char *argv[]) {
int myfd;
char *mfile;

printf("Data at: %16lx\n", (long unsigned int) &something);
printf("Heap at : %16lx\n", (long unsigned int) malloc(1));
printf("Stack at: %16lx\n", (long unsigned int) &mfile);

/* Open the file */
myfd = open(argv[1], O_RDWR | O_CREATE);
if (myfd < 0) { perror((“open failed!”);exit(1); }

/* map the file */
mfile = mmap(0, 10000, PROT_READ|PROT_WRITE, MAP_FILE|MAP_SHARED, myfd, 0);
if (mfile == MAP_FAILED) {perror("mmap failed"); exit(1);}

printf("mmap at : %16lx\n", (long unsigned int) mfile);

puts(mfile);
strcpy(mfile+20,"Let's write over it");
close(myfd);
return 0;

}

Lec 19.354/8/15 Kubiatowicz CS162 ©UCB Spring 2015

Sharing through Mapped Files

File

0x000…

0xFFF…

instructions

data

heap

stack

OS

0x000…

0xFFF…

instructions

data

heap

stack

OS

VAS 1 VAS 2

Memory

Lec 19.364/8/15 Kubiatowicz CS162 ©UCB Spring 2015

File System Caching
• Key Idea: Exploit locality by caching data in memory

– Name translations: Mapping from pathsinodes
– Disk blocks: Mapping from block addressdisk content

• Buffer Cache: Memory used to cache kernel resources,
including disk blocks and name translations

– Can contain “dirty” blocks (blocks yet on disk)
• Replacement policy? LRU

– Can afford overhead of timestamps for each disk block
– Advantages:

» Works very well for name translation
» Works well in general as long as memory is big enough to

accommodate a host’s working set of files.
– Disadvantages:

» Fails when some application scans through file system,
thereby flushing the cache with data used only once

» Example: find . –exec grep foo {} \;
• Other Replacement Policies?

– Some systems allow applications to request other policies
– Example, ‘Use Once’:

» File system can discard blocks as soon as they are used

Lec 19.374/8/15 Kubiatowicz CS162 ©UCB Spring 2015

File System Caching (con’t)
• Cache Size: How much memory should the OS allocate

to the buffer cache vs virtual memory?
– Too much memory to the file system cache  won’t be
able to run many applications at once

– Too little memory to file system cache  many
applications may run slowly (disk caching not effective)

– Solution: adjust boundary dynamically so that the disk
access rates for paging and file access are balanced

• Read Ahead Prefetching: fetch sequential blocks early
– Key Idea: exploit fact that most common file access is
sequential by prefetching subsequent disk blocks ahead of
current read request (if they are not already in memory)

– Elevator algorithm can efficiently interleave groups of
prefetches from concurrent applications

– How much to prefetch?
» Too many imposes delays on requests by other applications
» Too few causes many seeks (and rotational delays) among

concurrent file requests

Lec 19.384/8/15 Kubiatowicz CS162 ©UCB Spring 2015

File System Caching (con’t)
• Delayed Writes: Writes to files not immediately sent

out to disk
– Instead, write() copies data from user space buffer
to kernel buffer (in cache)

» Enabled by presence of buffer cache: can leave written
file blocks in cache for a while

» If some other application tries to read data before
written to disk, file system will read from cache

– Flushed to disk periodically (e.g. in UNIX, every 30 sec)
– Advantages:

» Disk scheduler can efficiently order lots of requests
» Disk allocation algorithm can be run with correct size value

for a file
» Some files need never get written to disk! (e..g temporary

scratch files written /tmp often don’t exist for 30 sec)
– Disadvantages

» What if system crashes before file has been written out?
» Worse yet, what if system crashes before a directory file

has been written out? (lose pointer to inode!)

Lec 19.394/8/15 Kubiatowicz CS162 ©UCB Spring 2015

Important “ilities”
• Availability: the probability that the system can

accept and process requests
– Often measured in “nines” of probability. So, a 99.9%
probability is considered “3-nines of availability”

– Key idea here is independence of failures
• Durability: the ability of a system to recover data

despite faults
– This idea is fault tolerance applied to data
– Doesn’t necessarily imply availability: information on
pyramids was very durable, but could not be accessed
until discovery of Rosetta Stone

• Reliability: the ability of a system or component to
perform its required functions under stated conditions
for a specified period of time (IEEE definition)

– Usually stronger than simply availability: means that the
system is not only “up”, but also working correctly

– Includes availability, security, fault tolerance/durability
– Must make sure data survives system crashes, disk
crashes, other problems

Lec 19.404/8/15 Kubiatowicz CS162 ©UCB Spring 2015

How to make file system durable?
• Disk blocks contain Reed-Solomon error correcting

codes (ECC) to deal with small defects in disk drive
– Can allow recovery of data from small media defects

• Make sure writes survive in short term
– Either abandon delayed writes or
– use special, battery-backed RAM (called non-volatile RAM
or NVRAM) for dirty blocks in buffer cache.

• Make sure that data survives in long term
– Need to replicate! More than one copy of data!
– Important element: independence of failure

» Could put copies on one disk, but if disk head fails…
» Could put copies on different disks, but if server fails…
» Could put copies on different servers, but if building is

struck by lightning….
» Could put copies on servers in different continents…

• RAID: Redundant Arrays of Inexpensive Disks
– Data stored on multiple disks (redundancy)
– Either in software or hardware

» In hardware case, done by disk controller; file system may
not even know that there is more than one disk in use

Lec 19.414/8/15 Kubiatowicz CS162 ©UCB Spring 2015

RAID 1: Disk Mirroring/Shadowing

• Each disk is fully duplicated onto its "shadow“
– For high I/O rate, high availability environments
– Most expensive solution: 100% capacity overhead

• Bandwidth sacrificed on write:
– Logical write = two physical writes
– Highest bandwidth when disk heads and rotation fully
synchronized (hard to do exactly)

• Reads may be optimized
– Can have two independent reads to same data

• Recovery:
– Disk failure  replace disk and copy data to new disk
– Hot Spare: idle disk already attached to system to be
used for immediate replacement

recovery
group

Lec 19.424/8/15 Kubiatowicz CS162 ©UCB Spring 2015

• Data stripped across
multiple disks

– Successive blocks
stored on successive
(non-parity) disks

– Increased bandwidth
over single disk

• Parity block (in green)
constructed by XORing
data bocks in stripe

– P0=D0D1D2D3
– Can destroy any one
disk and still
reconstruct data

– Suppose D3 fails,
then can reconstruct:
D3=D0D1D2P0

• Later in term: talk about spreading information widely
across internet for durability.

RAID 5+: High I/O Rate Parity

Increasing
Logical
Disk
Addresses

Stripe
Unit

D0 D1 D2 D3 P0

D4 D5 D6 P1 D7

D8 D9 P2 D10 D11

D12 P3 D13 D14 D15

P4 D16 D17 D18 D19

D20 D21 D22 D23 P5

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

Lec 19.434/8/15 Kubiatowicz CS162 ©UCB Spring 2015

Hardware RAID: Subsystem Organization

CPU array
controller

single board
disk
controller

single board
disk
controller

single board
disk
controller

single board
disk
controller

host
adapter

manages interface
to host, DMA

control, buffering,
parity logic

physical device
control

often piggy-backed
in small format devices

• Some systems duplicate
all hardware, namely
controllers, busses, etc.

Lec 19.444/8/15 Kubiatowicz CS162 ©UCB Spring 2015

Higher Durability/Reliability through
Geographic Replication

• Highly durable – hard to destroy bits
• Highly available for reads
• Low availability for writes

– Can’t write if any one is not up
– Or – need relaxed consistency model

• Reliability?

Lec 19.454/8/15 Kubiatowicz CS162 ©UCB Spring 2015

File System Reliability

• What can happen if disk loses power or machine
software crashes?

– Some operations in progress may complete
– Some operations in progress may be lost
– Overwrite of a block may only partially complete

• Having RAID doesn’t necessarily protect against all
such failures

– Bit-for-bit protection of bad state?
– What if one disk of RAID group not written?

• File system wants durability (as a minimum!)
– Data previously stored can be retrieved (maybe after
some recovery step), regardless of failure

Lec 19.464/8/15 Kubiatowicz CS162 ©UCB Spring 2015

Achieving File System Reliability

• Problem posed by machine/disk failures
• Transaction concept
• Approaches to reliability

– Careful sequencing of file system operations
– Copy-on-write (WAFL, ZFS)
– Journalling (NTFS, linux ext4)
– Log structure (flash storage)

• Approaches to availability
– RAID

Lec 19.474/8/15 Kubiatowicz CS162 ©UCB Spring 2015

Storage Reliability Problem

• Single logical file operation can involve updates to
multiple physical disk blocks

– inode, indirect block, data block, bitmap, …
– With remapping, single update to physical disk block
can require multiple (even lower level) updates

• At a physical level, operations complete one at a
time

– Want concurrent operations for performance
• How do we guarantee consistency regardless of

when crash occurs?

Lec 19.484/8/15 Kubiatowicz CS162 ©UCB Spring 2015

Threats to Reliability

• Interrupted Operation
– Crash or power failure in the middle of a series of
related updates may leave stored data in an
inconsistent state.

– e.g.: transfer funds from BofA to Schwab. What
if transfer is interrupted after withdrawal and
before deposit

• Loss of stored data
– Failure of non-volatile storage media may cause
previously stored data to disappear or be corrupted

Lec 19.494/8/15 Kubiatowicz CS162 ©UCB Spring 2015

Log Structured and Journaled File Systems
• Better reliability through use of log

– All changes are treated as transactions
– A transaction is committed once it is written to the log

» Data forced to disk for reliability
» Process can be accelerated with NVRAM

– Although File system may not be updated immediately, data
preserved in the log

• Difference between “Log Structured” and “Journaled”
– In a Log Structured filesystem, data stays in log form
– In a Journaled filesystem, Log used for recovery

• For Journaled system:
– Log used to asynchronously update filesystem

» Log entries removed after used
– After crash:

» Remaining transactions in the log performed (“Redo”)
» Modifications done in way that can survive crashes

• Examples of Journaled File Systems:
– Ext3 (Linux), XFS (Unix), etc.

Lec 19.504/8/15 Kubiatowicz CS162 ©UCB Spring 2015

More General Solutions

• Transactions for Atomic Updates
– Ensure that multiple related updates are performed
atomically

– i.e., if a crash occurs in the middle, the state of the
systems reflects either all or none of the updates

– Most modern file systems use transactions internally to
update the many pieces

– Many applications implement their own transactions
• Redundancy for media failures

– Redundant representation (error correcting codes)
– Replication
– E.g., RAID disks

Lec 19.514/8/15 Kubiatowicz CS162 ©UCB Spring 2015

Transactions

• Closely related to critical sections in manipulating
shared data structures

• Extend concept of atomic update from memory to
stable storage

– Atomically update multiple persistent data structures
• Like flags for threads, many ad hoc approaches

– FFS carefully ordered the sequence of updates so
that if a crash occurred while manipulating directory
or inodes the disk scan on reboot would detect and
recover the error, -- fsck

– Applications use temporary files and rename

Lec 19.524/8/15 Kubiatowicz CS162 ©UCB Spring 2015

Key concept: Transaction

• An atomic sequence of actions (reads/writes) on
a storage system (or database)

• That takes it from one consistent state to
another

consistent state 1 consistent state 2
transaction

Lec 19.534/8/15 Kubiatowicz CS162 ©UCB Spring 2015

Typical Structure

• Begin a transaction – get transaction id
• Do a bunch of updates

– If any fail along the way, roll-back
– Or, if any conflicts with other transactions, roll-back

• Commit the transaction

Lec 19.544/8/15 Kubiatowicz CS162 ©UCB Spring 2015

“Classic” Example: Transaction

UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice';

UPDATE branches SET balance = balance - 100.00
WHERE name = (SELECT branch_name FROM accounts
WHERE name = 'Alice');

UPDATE accounts SET balance = balance + 100.00
WHERE name = 'Bob';

UPDATE branches SET balance = balance + 100.00
WHERE name = (SELECT branch_name FROM accounts
WHERE name = 'Bob');

BEGIN; --BEGIN TRANSACTION

COMMIT; --COMMIT WORK

Transfer $100 from Alice’s account to Bob’s account

Lec 19.554/8/15 Kubiatowicz CS162 ©UCB Spring 2015

The ACID properties of Transactions

• Atomicity: all actions in the transaction happen, or
none happen

• Consistency: transactions maintain data integrity,
e.g.,

– Balance cannot be negative
– Cannot reschedule meeting on February 30

• Isolation: execution of one transaction is isolated
from that of all others; no problems from concurrency

• Durability: if a transaction commits, its effects
persist despite crashes

Lec 19.564/8/15 Kubiatowicz CS162 ©UCB Spring 2015

Poor-man’s transactions: Toward Copy-on-Write

• Files are for durable storage AND flexible process-
independent, protected namespace

• Files grow incrementally as written
– Update-in-place file systems start with a basic chunk
and append (possibly larger) chunks as file grows

– Transition from random access to large sequential
• Disks trends: huge and cheap, high startup
• Design / Memory trends: cache everything

– Reads satisfied from cache, buffer multiple writes and
do them all together

• Application trends: make multiple related changes to a
file and commit all or nothing

– What if want to be able to undo changes later?

Lec 19.574/8/15 Kubiatowicz CS162 ©UCB Spring 2015

Emulating COW @ user level

• Transform file foo to a new version
• Open/Create a new file foo.v

– where v is the version #
• Do all the updates based on the old foo

– Reading from foo and writing to foo.v
– Including copying over any unchanged parts

• Update the link
– ln –f foo foo.v

• Does it work?
• What if multiple updaters at same time?
• How to keep track of every version of file?

– Would we want to do that?

Lec 19.584/8/15 Kubiatowicz CS162 ©UCB Spring 2015

Creating a New Version

• If file represented as a tree of blocks, just need
to update the leading fringe

Write

old version new version

Lec 19.594/8/15 Kubiatowicz CS162 ©UCB Spring 2015

Creating a New Version

• If file represented as a tree of blocks, just need
to update the leading fringe

Write

old version new version

Lec 19.604/8/15 Kubiatowicz CS162 ©UCB Spring 2015

ZFS

• Variable sized blocks: 512 B – 128 KB
• Symmetric tree

– Know if it is large or small when we make the copy
• Store version number with pointers

– Can create new version by adding blocks and new
pointers

• Buffers a collection of writes before creating a
new version with them

• Free space represented as tree of extents in
each block group

– Delay updates to freespace (in log) and do them all
when block group is activated

Lec 19.614/8/15 Kubiatowicz CS162 ©UCB Spring 2015

File System Summary (1/2)
• File System:

– Transforms blocks into Files and Directories
– Optimize for size, access and usage patterns
– Maximize sequential access, allow efficient random access
– Projects the OS protection and security regime (UGO vs ACL)

• File defined by header, called “inode”
• Naming: act of translating from user-visible names to actual

system resources
– Directories used for naming for local file systems
– Linked or tree structure stored in files

• Multilevel Indexed Scheme
– inode contains file info, direct pointers to blocks, indirect

blocks, doubly indirect, etc..
– NTFS uses variable extents, rather than fixed blocks, and tiny

files data is in the header
• 4.2 BSD Multilevel index files

– Inode contains pointers to actual blocks, indirect blocks, double
indirect blocks, etc.

– Optimizations for sequential access: start new files in open
ranges of free blocks, rotational Optimization

Lec 19.624/8/15 Kubiatowicz CS162 ©UCB Spring 2015

File System Summary (2/2)
• File layout driven by freespace management

– Integrate freespace, inode table, file blocks and
directories into block group

• Deep interactions between memory management, file
system, and sharing

• Important system properties
– Availability: how often is the resource available?
– Durability: how well is data preserved against faults?
– Reliability: how often is resource performing correctly?

• RAID: Redundant Arrays of Inexpensive Disks
– RAID1: mirroring, RAID5: Parity block

• Use of Log to improve Reliability
– Journaled file systems such as ext3

• Copy-on-write creates new (better positioned) version
of file upon burst of writes

