
Congestion Avoidance and Control

V. Jacobson

(Originally Published in: Proc. SIGCOMM '88, Vo118 No. 4, August 1988)

ACM SIGCOMM -157- Computer Communication Review

Congestion Avoidance and Control

V a n J a c o b s o n *

University of California
Lawrence Berkeley Laboratory

Berkeley, CA 94720
van@helios.ee.lbl.gov

In October of '86, the Internet had the first of what
became a series of 'congestion collapses'. During this
period, the data t h roughpu t f rom LBL to UC Berke-
ley (sites separated by 400 yards and three IMP hops)
d ropped f rom 32 Kbps to 40 bps. Mike Karels 1 and I
were fascinated by this sudden factor-of-thousand drop
in ba ndwid th and embarked on an investigation of w h y
things had gotten so bad. We wondered , in particular,
if the 4.3BSD (Berkeley UNIX) TCP was mis-behaving or
if it could be tuned to work better under abysmal net-
work conditions. The answer to bo th of these questions
was "yes".

Since that time, we have pu t seven new algorithms
into the 4BSD TCP:

(i) round-tr ip- t ime variance estimation

(ii) exponential retransmit t imer backoff

(iii) slow-start

(iv) more aggressive receiver ack policy

(v) dynamic w indow sizing on congestion

(vi) Karn's c lamped retransmit backoff

(vii) fast retransmit

Our measurements and the reports of beta testers sug-
gest that the final p roduc t is fairly good at dealing with
congested condit ions on the Internet.

This paper is a brief descript ion of (i) - (v) a n d the
rationale behind them. (vi) is an algori thm recently de-
ve loped by Phil Karn of Bell Communicat ions Research,
described in [KP87]. (vii) is described in a soon-to-be-
publ ished RFC.

* This work was supported in part by the U.S. Department of En-
ergy under Contract Number DE-AC03-76SF00098.

1 The algorithms and ideas described in this paper were developed
in collaboration with Mike Karels of the UC Berkeley Computer Sys-
tem Research Group. The reader should assume that anything clever
is due to Mike. Opinions and mistakes are the property of the author.

Algori thms (i) - (v) spring from one observation:
The flow on a TCP connect ion (or ISO TP-4 or Xerox NS
SPP connection) should obey a 'conservat ion of pack-
ets' principle. And, if this principle were obeyed, con-
gestion collapse would become the except ion rather
than the rule. Thus congest ion control involves find-
ing places that violate conservat ion and fixing them.

By 'conservat ion of packets ' I m ean that for a con-
nection 'in equil ibrium', i.e., running stably wi th a full
w in d o w of data in transit, the packet flow is what a
physicist would call 'conservative' : A new packet isn't
pu t into the ne twork until an old packet leaves. The
physics of flow predicts that systems wi th this p roper ty
should be robust in the face of congestion. Observat ion
of the Internet suggests that it was not part icularly ro-
bust. Why the discrepancy?

There are only three ways for packet conservat ion to
fail:

1. The connection doesn ' t get to equil ibrium, or

2. A sender injects a new packet before an old packet
has exited, or

3. The equil ibrium can' t be reached because of re-
source limits along the path.

In the following sections, we treat each of these in turn.

1 Getting to Equilibrium:
Slow-start

Failure (1) has to be f rom a connect ion that is either
starting or restarting after a packet loss. Another way
to look at the conservat ion p roper ty is to say that the
sender uses acks as a 'clock' to strobe new packets into
the network. Since the receiver can generate acks no
faster than data packets can get th rough the network,

ACM SIGCOMM -158- Computer Communication Review

F- P r ~

:::::::::::::::::::::::::::::::::

Sender Receiver

L__ \ , -- / __Y
~E~ [!it | i] l::t

~ As -'t I-- Ar--t

This is a schematic representation of a sender and receiver on high bandwidth networks
connected by a slower, long-haul net. The sender is just starting and has shipped a
window's worth of packets, back-to-back. The ack for the first of those packets is about
to arrive back at the sender (the vertical line at the mouth of the lower left funnel).
The vertical direction is bandwidth, the horizontal direction is time. Each of the shaded
boxes is a packet. Bandwidth x Time -- Bits so the area of each box is the packet size.
The number of bits doesn't change as a packet goes through the network so a packet
squeezed into the smaller long-haul bandwidth must spread out in time. The time
Pb represents the minimum packet spacing on the slowest link in the path (the bottle-
neck). As the packets leave the bottleneck for the destination net, nothing changes the
inter-packet interval so on the receiver's net packet spacing P, -- Pb. If the receiver
processing time is the same for all packets, the spacing between acks on the receiver's
net A, = Pr = Pb. If the time slot Pb was big enough for a packet, it's big enough for
an ack so the ack spacing is preserved along the return path. Thus the ack spacing on
the sender's net As = Pb.
So, if packets after the first burst are sent only in response to an ack, the sender 's packet
spacing will exactly match the packet time on the slowest link in the path.

Figure 1: Window Flow Control 'Self-clocking'

the p ro toco l is ' self c lock ing ' (fig. 1). Self c locking sys-
t ems au tomat i ca l ly adjus t to b a n d w i d t h and de lay vari-
a t ions and h a v e a w i d e d y n a m i c r ange (impor tan t con-
s ider ing tha t TCP spans a r ange f r o m 800 M b p s C r a y
channe ls to 1200 bps packe t rad io links). But the same
th ing that m a k e s a self-clocked sys t em stable w h e n it 's
r u n n i n g m a k e s it h a r d to start - - to get da ta f lowing
there m u s t be acks to clock ou t packets b u t to get acks
there m u s t be da ta f lowing.

To start the 'c lock ' , w e d e v e l o p e d a slow-start al-
g o r i t h m to g r a d u a l l y increase the a m o u n t of da ta in-
transit. 2 A l t h o u g h w e flatter ourse lves that the des ign

2Slow-start is quite similar to the CUTE algorithm described in
[Jai86b]. We didn't know about CUTE at the time we were devel-
oping slow-start but we should have--CUTE preceded our work by
several months.

When describing our algorithm at the Feb., 1987, Internet Engineer-
ing Task Force (IETF) meeting, we called it soft-start, a reference to an
electronics engineer's technique to limit in-rush current. The name

of this a lgo r i thm is ra ther subtle, the i m p l e m e n t a t i o n is
trivial - - one n e w state var iable a n d three lines of code
in the sender :

• A d d a congestion window, c w n d , to the per-
connec t ion state.

• W h e n s tar t ing or res tar t ing after a loss, set c w n d
to one packet .

• O n each ack for n e w data, increase c w n d b y one
packet .

• W h e n sending , send the m i n i m u m of the re-
ce iver ' s adver t i sed w i n d o w and cwnd .

slow-start was coined by John Nagle in a message to the IETF mailing
list in March, '87. This name was clearly superior to ours and we
promptly adopted it.

ACM SIGCOMM -159- Computer Communication Review

OR
I _ One Round Trip Time _ I

~__________~ One Packet Time

1R

2R

R ...

The horizontal direction is time. The continuous time line has been chopped into one-
round-trip-time pieces stacked vertically with increasing time going down the page. The
grey, numbered boxes are packets. The white numbered boxes are the corresponding
acks.
As each ack arrives, two packets are generated: one for the ack (the ack says a packet
has left the system so a new packet is added to take its place) and one because an ack
opens the congestion window by one packet. It may be clear from the figure why an
add-one-packet-to-window policy opens the window exponentially in time.
If the local net is much faster than the long haul net, the ack's two packets arrive at the
bottleneck at essentially the same time. These two packets are shown stacked on top of
one another (indicating that one of them would have to occupy space in the gateway's
outbound queue). Thus the short-term queue demand on the gateway is increasing
exponentially and opening a window of size W packets will require W/2 packets of
buffer capacity at the bottleneck.

Figure 2: The Chronology of a Slow-start

Actually, the slow-start w indow increase isn't that
slow: it takes t ime R log 2 W where R is the round-
trip-time and W is the w indow size in packets (fig. 2).
This means the w i n d o w opens quickly enough to have
a negligible effect on performance, even on links with
a large b a n d w i d t h - d e l a y product . And the algori thm
guarantees that a connect ion will source data at a rate at
most twice the m a x i m u m possible on the path. Without
slow-start, by contrast, when 10 Mbps Ethernet hosts
talk over the 56 Kbps Arpanet via IP gateways, the first-
hop gateway sees a burst of eight packets del ivered at
200 times the pa th bandwidth . This burst of packets
often puts the connect ion into a persistant failure mode
of cont inuous retransmissions (figures 3 and 4).

2 Conservation at equilibrium:
round-trip timing

Once data is f lowing reliably, problems (2) and (3)
should be addressed. Assuming that the protocol im-
plementat ion is correct, (2) mus t represent a failure of
sender ' s retransmit timer. A good round trip t ime es-
timator, the core of the retransmit timer, is the single
most impor tant feature of any protocol implementa-
tion that expects to survive heavy load. And it is fre-
quent ly botched ([Zha86] and [Jai86a] describe typical
problems).

One mistake is not estimating the variation, aR, of
the round trip time, R. From queuing theory we know

ACM SIGCOMM -160 - Computer Communication Review

o

Z
o~

g ~
69

o
0.

o

o

?*
d,

..y':":" o /

.,,"

e ~

0 2 4 6 8 10

Send Time (sec)

Trace data of the start of a TCP conversat ion be tween t w o Sun 3/50s runn ing Sun os 3.5
(the 4.3BSD TCP). The two Suns were on different Ethemets connected by IP gateways
driving a 230.4 Kbs point-to-point l ink (essentially the setup shown in fig. 7).
Each dot is a 512 data-byte packet. The x-axis is the time the packet was sent. The y-axis
is the sequence number in the packet header. Thus a vertical array of dots indicate
back-to-back packets and two dots with the same y but different x indicate a retransmit.
'Desirable' behavior on this graph would be a relatively smooth line of clots extending
diagonally from the lower left to the upper right. The slope of this line would equal the
available bandwidth. Nothing in this trace resembles desirable behavior.
The dashed line shows the 20 KBps bandwidth available for this connection. Only 35%
of this bandwidth was used; the rest was wasted on retransmits. Almost everything is
retransmitted at]east once and data from 54 to 58 KB is sent five times.

Figure 3: Startup behavior of TCP without Slow-start

that R and the variation in R increase quickly with
load. If the load is p (the ratio of average arrival rate to
average departure rate), R and aR scale like (1 - p) - l .
To make this concrete, if the network is running at 75%
of capacity, as the Arpanet was in last April 's collapse,
one should expect round-trip-time to vary by a factor
of sixteen (±2~).

The TCP protocol specification, [RFC793], suggests
estimating mean round trip time via the low-pass filter

R = c~R + (1 - ~)M

where R is the average RTT estimate, M is a round trip
time measurement from the most recently acked data
packet, and c~ is a filter gain constant with a suggested
value of 0.9. Once the R estimate is updated, the re-
transmit t imeout interval, rto, for the next packet sent
is set to fiR.

The parameter fl accounts for RTT variation (see
[Cla82], section 5). The suggested fl = 2 can adapt
to loads of at most 30%. Above this point, a connection
will respond to load increases by retransmitt ing packets
that have only been delayed in transit. This forces the
network to do useless work, wasting bandwid th on du-
plicates of packets that will be delivered, at a time when
it's known to be having trouble with useful work. I.e.,
this is the network equivalent of pouring gasoline on a
fire.

We developed a cheap method for estimating vari-
ation (see appendix A) 3 and the resulting retransmit
timer essentially eliminates spurious retransmissions.

3 We are far from the first to recognize that t ransport needs to esti-
mate both mean and variation. See, for example, [Edg83]. But we do
think our estimator is simpler than most.

ACM SIGCOMM - 1 6 1 - Computer Communicat ion Review

..'
. f"J /

o _ ..."' ,,#'"'"" 0 / " 8

o

, / f y / f j , f , . •
v o

8 0 -

~" j,Z ZZf "''ff "

o . , , , , ,
2 4 6 8 10

Send Time (sec)

Same conditions as the previous figure (same time of day, same Suns, same network
path, same buffer and window sizes), except the machines were running the 4.3+TCP
with slow-start.
No bandwidth is wasted on retransmits but two seconds is spent on the slow-start so
the effective bandwidth of this part of the trace is 16 KBps - - two times better than
figure 3. (This is slightly misleading: Unlike the previous figure, the slope of the trace
is 20 KBps and the effect of the 2 second offset decreases as the trace lengthens. E.g.,
if this trace had run a minute, the effective bandwidth would have been 19 KBps. The
effective bandwidth without slow-start stays at 7 KBps no matter how long the trace.)

Figure 4: Startup behavior of TCP with Slow-start

A pleasant side effect of estimating ~ rather than using
a fixed value is that low load as well as high load per-
formance improves, particularly over high delay paths
such as satellite links (figures 5 and 6).

Another timer mistake is in the backoff after a re-
transmit: If a packet has to be retransmitted more than
once, h o w should the retransmits be spaced? Only one
scheme will work, exponential backoff, but proving this
is abi t involved. 4 To finesse a proof, note that a ne twork
is, to a very good approximation, a linear system. That
is, it is composed of elements that behave like linear op-
erators m integrators, delays, gain stages, etc. Linear

4 An in-progress paper attempts a proof. If an IP gateway is viewed
as a 'shared resource with fixed capacity', it bears a remarkable resem-
blance to the 'ether' in an Ethernet. The retransmit backoff problem is
essentially the same as showing that no backoff'slower' than an expo-
nential will guarantee stability on an Ethernet. Unfortunately, in the-
ory even exponential backoff won't guarantee stability (see [Aid87]).
Fortunately, in practise we don't have to deal with the theorist's infi-
nite user population and exponential is "good enough".

system theory says that if a system is stable, the stability
is exponential. This suggests that an unstable system
(a ne twork subject to r andom load shocks and prone to
congestive collapse s) can be stabilized by adding some
exponential damping (exponential timer backoff) to its
pr imary excitation (senders, traffic sources).

3 Adapting to the path: congestion
avoidance

If the timers are in good shape, it is possible to state with
some confidence that a t imeout indicates a lost packet
and not a broken timer. At this point, something can be
done about (3). Packets get lost for two reasons: they

s The phrase congestion collapse (describing a positive feedback in-
stability due to poor retransmit timers) is again the coinage of John
Nagle, this time from [Nag84].

ACM S IGCOMM - 1 6 2 - Computer Communicat ion Review

i

i i
"-''i_i i i -- ' , ,

!" !'C" -"

I I I I I I I t I I
10 20 30 40 50 60 70 80 90 1 O0 110

Packet

Trace data showing per-packet round trip time on a well-behaved Arpanet connection.
The x-axis is the packet number (packets were numbered sequentially, starting with one)
and the y-axis is the elapsed time from the send of the packet to the sender's receipt of
its ack. During this portion of the trace, no packets were dropped or retransmitted.
The packets are indicated by a dot. A dashed line connects them to make the sequence
easier to follow. The solid line shows the behavior of a retransmit timer computed
according to the rules of RFC793.

Figure 5: Performance of an RFC793 retransmit timer

are d a m a g e d in transit, or the ne twork is congested and
somewhere on the pa th there was insufficient buffer
capacity. On mos t ne twork paths, loss due to d a m a g e
is rare (<< 1%) so it is p robable that a packet loss is due
to congest ion in the network. 6

A 'congest ion avoidance ' strategy, such as the one
p roposed in [JRC87], will have two components : The
ne twork m u s t be able to signal the t ranspor t endpoints
that congest ion is occurr ing (or about to occur). And the
endpoin ts mus t have a policy that decreases utilization
if this signal is received and increases util ization if the
signal isn ' t received.

If packet loss is (almost) a lways due to congest ion
and if a t imeout is (almost) a lways due to a lost packet,
we have a good candidate for the ' ne twork is congested '
signal. Part icularly since this signal is del ivered au-
tomatical ly by all existing networks , wi thout special

6 The congestion control scheme we propose is insensitive to dam-
age loss until the loss rate is on the order of one packet per window
(e.g., 12-15% for an 8 packet window). At this high loss rate, any
window flow control scheme will perform badly--a 12% loss rate de-
grades TCP throughput by 60%. The additional degradation from the
congestion avoidance window shrinking is the least of one's prob-
lems. A presentation in [IETF88] and an in-progress paper address
this subject in more detail.

modif icat ion (as opposed to [JRC87] which requires a
new bit in the packet headers and a modif icat ion to all
existing ga teways to set this bit).

The other par t of a congest ion avo idance strategy,
the endnode action, is a lmost identical in the DEC/ISO

scheme and o u r TCP 7 and follows direct ly f rom a first-
order t ime-series mode l of the network: Say ne twork
load is measu red b y average queue length over fixed
intervals of some appropr ia te length (something near
the round trip time). If Gi is the load at interval /,
an unconges ted ne twork can be mode l ed b y saying Gi
changes s lowly compared to the sampl ing time. I.e.,

L i : N

(N constant). If the ne twork is subject to congestion,
this zeroth order mode l breaks down. The average
queue length becomes the s u m of two terms, the N
above that accounts for the average arrival rate of new
traffic and intrinsic delay, and a new te rm that accounts
for the fraction of traffic left over f rom the last t ime in-
terval and the effect of this left-over traffic (e.g., induced

7This is not an accident: We copied Jain's scheme after hearing
his presentation at [IETE87] and realizing that the scheme was, in a
sense, universal.

ACM SIGCOMM -163- Computer Communication Review

o

,¢

. i . : i i i : ..: ~ : .."/i : . , .

.. ~: i • f'." ~" :"
," i-y" D

I T I I I I I I I I
10 20 30 40 50 60 70 80 90 1 O0 110

Packet

Same data as above but the solid line shows a retransmit timer computed according to
the algorithm in appendix A.

Figure 6: Performance of a Mean+Variance retransmit timer

retransmits):
Li = N + 7Li-1

(These are the first two terms in a Taylor series expan-
sion of L(t) . There is reason to believe one might even-
tually need a three term, second order model , bu t not
until the Internet has g rown substantially.)

When the ne twork is congested, 7 mus t be large and
the queue lengths will start increasing exponentially, s
The system will stabilize only if the traffic sources throt-
tle back at least as quickly as the queues are growing.
Since a source controls load in a window-based proto-
col by adjusting the size of the window, W , we end up
with the sender policy

On congestion:

Wi = dWi_l (d < 1)

I.e., a mult ipl icat ive decrease of the w indow size (which
becomes an exponential decrease over t ime if the con-
gestion persists).

If there 's no congestion, 7 mus t be near zero and the
load approximate ly constant. The ne twork announces,
via a d ropped packet, when demand is excessive bu t
says nothing if a connect ion is using less than its fair

SI.e., the system behaves like Li ,.~ 7Li -1 , a difference equation
with the solution

Ln = 7n Lo

which goes exponentially to infinity for any 7 > 1.

share (since the ne twork is stateless, it cannot know
this). Thus a connect ion has to increase its b andwid th
utilization to find out the current limit. E.g., you could
have been sharing the path wi th someone else and con-
verged to a w in d o w that gives you each half the avail-
able bandwidth . If she shuts down, 50% of the band-
width will be wasted unless y o u r w i n d o w size is in-
creased. What should the increase policy be?

The first thought is to use a symmetric , multiplica-
tive increase, possibly with a longer t ime constant,
Wi = bWi-1, 1 < b <_ 1/d. This is a mistake. The result
will oscillate wildly and, on the average, deliver poor
throughput . There is an analytic reason for this bu t it's
tedious to derive. It has to do wi th that fact that it is
easy to drive the net into saturation bu t ha rd for the net
to recover (what [Kle76], chap. 2.1, calls the rush-hour
effect). 9 Thus overest imating the available b andwid th

9In fig. 1, note that the 'pipesize' is 16 packets, 8 in each path, but
the sender is using a window of 22 packets. The six excess packets
will form a queue at the entry to the bottleneck and that queue cannot
shrink, even though the sender carefully clocks out packets at the
bottleneck link rate. This stable queue is another, unfortunate, aspect
of conservation: The queue would shrink only if the gateway could
move packets into the skinny pipe faster than the sender dumped
packets into the fat pipe. But the system tunes itself so each time the
gateway pulls a packet off the front of its queue, the sender lays a
new packet on the end.

A gateway needs excess output capacity (i.e., p < 1) to dissipate a
queue and the clearing time will scale like (1 - p)-2 ([Kle76], chap. 2
is an excellent discussion of this). Since at equilibrium our trans-
port connection 'wants' to run the bottleneck link at 100% (p = 1),

ACM SIGCOMM -164- Computer Communication Review

is costly. But an exponential, almost regardless of its
time constant, increases so quickly that overestimates
are inevitable.

Without justification, I'll state that the best increase
policy is to make small, constant changes to the window
size:

On no congestion:

W~ = W~_~ + ~ (~ << Wmo=)

where W,.,,a= is the pipesize (the delay-bandwidth prod-
uct of the path minus protocol overhead - - i.e., the
largest sensible window for the unloaded path). This
is the additive increase / multiplicative decrease policy
suggested in [JRC87] and the policy we've implemented
in TCP. The only difference between the two implemen-
tations is the choice of constants for d and u. We used
0.5 and I for reasons partially explained in appendix C.
A more complete analysis is in yet another in-progress
paper.

The preceding has probably made the congestion
control algorithm sound hairy but it's not. Like slow-
start, it's three lines of code:

• On any timeout, set cwnd to half the current win-
dow size (this is the multiplicative decrease).

• On each ack for new data, increase cwnd by
1/cwnd (this is the additive increase). 10

• When sending, send the minimum of the re-
ceiver's advertised window and cwnd.

Note that this algorithm is only congestion avoidance,
it doesn't include the previously described slow-start.
Since the packet loss that signals congestion will re-
sult in a re-start, it will almost certainly be necessary

we have to be sure that during the non-equilibrium window adjust-
ment, our control policy allows the gateway enough free bandwidth
to dissipate queues that inevitably form due to path testing and traf-
fic fluctuations. By an argument similar to the one used to show
exponential timer backoff is necessary, it's possible to show that an
exponential (multiplicative) window increase policy will be 'faster'
than the dissipation time for some traffic mix and, thus, leads to an
unbounded growth of the bottleneck queue.

10 This increment rule may be less than obvious. We want to in-
crease the window by at most one packet over a time interval of
length R (the round trip time). To make the algorithm "self-clocked',
it's better to increment by a small amount on each ack rather than by
a large amount at the end of the interval. (Assuming, of course, that
the sender has effective silly window avoidance (see [Cla82], section
3) and doesn't attempt to send packet fragments because of the frac-
tionally sized window.) A window of size cwnd packets will generate
at most cwnd acks in one R. Thus an increment of 1/cwnd per ack
will increase the window by at most one packet in one R. In TCP,
windows and packet sizes are in bytes so the increment translates to
maxseg*maxseg/cwnd where maxseg is the maximum segment size and
cwnd is expressed in bytes, not packets.

to slow-start in addition to the above. But, because
both congestion avoidance and slow-start are triggered
by a timeout and both manipulate the congestion win-
dow, they are frequently confused. They are actually in-
dependent algorithms with completely different objec-
tives. To emphasize the difference, the two algorithms
have been presented separately even though in prac-
tise they should be implemented together. Appendix B
describes a combined slow-start/congestion avoidance
algorithm. 11

Figures 7 through 12 show the behavior of TCP con-
nections with and without congestion avoidance. Al-
though the test conditions (e.g., 16 KB windows) were
deliberately chosen to stimulate congestion, the test sce-
nario isn't far from common practice: The Arpanet
IMP end-to-end protocol allows at most eight packets
in transit between any pair of gateways. The default
4.3BSD window size is eight packets (4 KB). Thus si-
multaneous conversations between, say, any two hosts
at Berkeley and any two hosts at MIT would exceed
the buffer capacity of the UCB-MIT IMP path and would
lead 12 to the behavior shown in the following figures.

4 F u t u r e w o r k : t h e g a t e w a y s i d e o f

c o n g e s t i o n c o n t r o l

While algorithms at the transport endpoints can insure
the network capacity isn't exceeded, they cannot insure

11We have also developed a rate-based variant of the congestion
avoidance algorithm to apply to connectiontess traffic (e.g., domain
server queries, RPC requests). Remembering that the goal of the in-
crease and decrease policies is bandwidth adjustment, and that 'time'
(the controlled parameter in a rate-based scheme) appears in the de-
nominator of bandwidth, the algorithm follows immediately: The
multiplicative decrease remains a multiplicative decrease (e.g., dou-
ble the interval between packets). But subtracting a constant amount
from interval does not result in an additive increase in bandwidth.
This approach has been tried, e.g., [Kli87] and [PP87], and appears
to oscillate badly. To see why, note that for an inter-packet interval
/ and decrement c, the bandwidth change of a decrease-interval-by-
constant policy is

1 1

7 --+ [- c

a non-linear, and destablizing, increase.
An update policy that does result in a linear increase of bandwidth

over time is
Odi-- I

a + l i -1
where I i is the interval between sends when the i th packet is sent
and c~ is the desired rate of increase in packets per packet/sec.

We have simulated the above algori thm and i t appears to perform
well. To test the predictions of that simulation against reality, we
have a cooperative project with Sun Microsystems to prototype RPC
dynamic congestion control algorithms using NFS as a test-bed (since
NFS is known to have congestion problems yet it would be desirable
to have it work over the same range of networks as TCP).

12 did lead.

ACM SIGCOMM -165- Computer Communication Review

C 2 y M°r°wav°

~ ' ~ " " ~ 10 Mbs Ethernets

Test setup to examine the interaction of multiple, simultaneous TCP conversations shar-
ing a bottleneck link. 1 MByte transfers (2048 512-data-byte packets) were initiated 3
seconds apart from four machines at LBL to four machines at UCB, one conversation
per machine pair (the dotted lines above show the pairing). All traffic went via a 230.4
Kbps link connecting IP router csam at LBL to IP router cartan at UCB.
The microwave link queue can hold up to 50 packets. Each connection was given a
window of 16 KB (32 512-byte packets). Thus any two connections could overflow the
available buffering and the four connections exceeded the queue capacity by 160%.

Figure 7: Multiple conversation test setup

fair sharing of that capacity. Only in gateways, at the
convergence of flows, is there enough information to
control sharing and fair allocation. Thus, we view the
gateway 'congest ion detection' a lgori thm as the next
big step.

The goal of this algori thm to send a signal to the
endnodes as early as possible, bu t not so early that the
gateway becomes starved for traffic. Since we plan
to cont inue using packet drops as a congestion sig-
nal, ga teway 'self protect ion ' f rom a mis-behaving host
should faU-out for free: That host will s imply have most
of its packets d r opped as the gateway trys to tell it
that it 's using more than its fair share. Thus, like the
endnode algorithm, the gateway algori thm should re-
duce congest ion even if no endnode is modif ied to do
congest ion avoidance. And nodes that do implement
congestion avoidance will get their fair share of band-
wid th and a m i n i m u m number of packet drops.

Since congest ion grows exponentially, detecting it
early is impor tant - - If detected early, small adjust-
ments to the senders ' windows will cure it. Other-
wise massive adjustments are necessary to give the net
enough spare capacity to p u m p out the backlog. But,
given the burs ty nature of traffic, reliable detection is a
non-trivial problem. [JRC87] proposes a scheme based

on averaging be tween queue regenerat ion points. This
should yield good burs t filtering bu t we think it might
have convergence problems unde r high load or signif-
icant second-order dynamics in the traffic. 13 We plan
to use some of our earlier work on ARMAX models for
round- t r ip - t ime /queue length predict ion as the basis
of detection. Prel iminary results suggest that this ap-
proach works well at high load, is immune to second-
order effects in the traffic and is computa t ional ly cheap
enough to not slow d o w n kilopacket-per-second gate-
ways.

Acknowledgements

I am very grateful to the members of the Internet Activ-
ity Board's End-to-End and Internet-Engineering task
forces for this past year ' s abundan t supply of inter-
est, encouragement , cogent questions and ne twork in-
sights.

13 The time between regeneration points scales like (1 - p)-1 and
the variance of that time like (1 - p)-3 (see [Fe171], chap. VI.9). Thus
the congestion detector becomes sluggish as congestion increases and
its signal-to-noise ratio decreases dramatically.

ACM SIGCOMM -166- Computer Communication Review

g

g

~ g

g

CD

,/
.,~¢;

x /
d

:.%.. -*-

,,2' "'
a,t, "%'

0 50 100 150 200

Time (sec)

Trace data from four simultaneous TCP conversations without congestion avoidance
over the paths shown in figure 7.
4,000 of 11,000 packets sent were retransmissions (i.e., half the data packets were re-
transmitted).
Since the link data bandwidth is 25 KBps, each of the four conversations should have
received 6 KBps. Instead, one conversation got 8 KBps, two got 5 KBps, one got 0.5
KBps and 6 KBps has vanished.

Figure 8: Multiple, simultaneous TCPs with no congestion avoidance

I a m also deep ly in debt to Jeff Mogul of DEC. With-
out Jeff 's pat ient p rodd i ng and way-beyond-the-cal l -
of -duty efforts to help m e get a draft submi t ted before
deadline, this p a p e r wou ld never have existed.

A A fast a lgor i thm for rtt m e a n and
variation

A . 1 T h e o r y

The RFC793 a lgor i thm for es t imat ing the m e a n round
trip t ime is one of the s implest examples of a class of es-
t imators called recursive prediction error or stochastic gra-
dient algori thms. In the past 20 years these a lgor i thms
have revolut ionized es t imat ion and control theory 14
and it 's p robab ly wor th looking at the RFC793 est ima-
tor in some detail.

14 See, for example [LS83].

Given a new m e a s u r e m e n t M of the RTT (round trip
time), TCP upda tes an est imate of the average RTT A b y

A *--- (1 - g)A + gM

where g is a 'ga in ' (0 < g < 1) that should be related
to the signal-to-noise ratio (or, equivalently, variance)
of M . This makes a more sense, and compu te s faster, if
we rearrange and collect t e rms mul t ip l ied by g to get

A ~ A + g (M - A)

Think of A as a predict ion of the next measurement .
M - A is the error in that predic t ion and the expression
above says we make a new predict ion based on the old
predict ion plus some fraction of the predict ion error.
The predict ion error is the s u m of two components : (1)
error due to 'noise ' in the m e a s u r e m e n t (random, un-
predictable effects like f luctuations in compe t ing traffic)
and (2) error due to a bad choice of A. Calling the ran-
d o m error E~ and the es t imat ion error Ee,

A ~-- A + gE~ + gEe

ACM SIGCOMM -167- Computer Communication Review

g
o

o o
oo

'2
~ 8

(D

=-
g
o) o o

o o
CM

I" °,"

- ..,
/ /

." .
/ /

. ,°o."

OO B

oof 6°e

/'
~°~°°

0 50 100 150 200

T ime (see)

Trace data f rom four simultaneous TCP conversations using congestion avoidance over
the paths shown in figure 7.
89 of 8281 packets sent were retransmissions (i.e., 1% of the data packets had to be
retransmitted).
Two of the conversations got 8 KBps and two got 4.5 KBps (i.e., all the link bandwidth
is accounted for - - see fig. 11). The difference between the high and low bandwidth
senders was due to the receivers. The 4.5 KBps senders were talking to 4.3BSD receivers
which would delay an ack until 35% of the window was filled or 200 ms had passed
(i.e., an ack was delayed for 5-7 packets on the average). This meant the sender would
deliver bursts of 5-7 packets on each ack.
The 8 KBps senders were talking to 4.3 + BSD receivers which would delay an ack for at
most one packet (the author doesn't believe that delayed acks are a particularly good
idea). I.e., the sender would deliver bursts of at most two packets.
The probability of loss increases rapidly with burst size so senders talking to old-style
receivers saw three times the loss rate (1.8% vs. 0.5%). The higher loss rate meant more
time spent in retransmit wait and, because of the congestion avoidance, smaller average
window sizes.

F i g u r e 9: Mul t ip le , s i m u l t a n e o u s T C P s w i th c o n g e s t i o n a v o i d a n c e

The gE~ term gives A a kick in the right direction while
the gE,, term gives it a kick in a r andom direction. Over
a number of samples, the r andom kicks cancel each
other out so this algori thm tends to converge to the
correct average. But g represents a compromise: We
want a large g to get mileage out of E¢ but a small g
to minimize the damage from E~. Since the E¢ terms
move A toward the real average no matter what value
we use for g, it 's almost always better to use a gain
that 's too small rather than one that 's too large. Typical
gain choices are 0.1-0.2 (though it's a good idea to take
long look at your raw data before picking a gain).

It 's probably obvious that A will oscillate r andomly
around the true average and the s tandard deviation of
A will be g sdev(M). Also that A converges to the
true average exponentially with time constant 1/g. So
a smaller g gives a stabler A at the expense of taking a
much longer time to get to the true average.

If we want some measure of the variat ion in M, say
to compute a good value for the TCP retransmit timer,
there are several alternatives. Variance, cr 2, is the con-
ventional choice because it has some nice mathematical
properties. But comput ing variance requires squaring
(M - A) so an estimator for it will contain a mul t iply

A C M S I G C O M M - 1 6 8 - C o m p u t e r C o m m u n i c a t i o n R e v i e w

/
cO ~:

I I T I I
20 40 60 80 100 120

T ime (sec)

The thin line shows the total bandwidth used by the four senders without congestion
avoidance (fig. 8), averaged over 5 second intervals and normalized to the 25 KBps link
bandwidth. Note that the senders send, on the average, 25% more than will fit in the
wire.
The thick line is the same data for the senders with congestion avoidance (fig. 9). The
first 5 second interval is low (because of the slow-start), then there is about 20 seconds
of damped oscillation as the congestion control 'regulator' for each TCP finds the correct
window size. The remaining time the senders run at the wire bandwidth. (The activity
around 110 seconds is a bandwidth 're-negotiation" due to connection one shutting
down. The activity around 80 seconds is a reflection of the 'flat spot' in fig. 9 where
most of conversation two's bandwidth is suddenly shifted to conversations three and
four - - a colleague and I find this 'punctuated equilibrium' behavior fascinating and
hope to investigate its dynamics in a future paper.)

Figure 10: Total bandwidth used by old and new TCPs

with a d a n g e r of in teger overf low. Also, m o s t appl ica-
t ions will w a n t var ia t ion in the same uni ts as A and M ,
so we ' l l be forced to take the square root of the var iance
to use it (i.e., at least a divide, mu l t i p ly and two adds).

A var ia t ion m e a s u r e tha t ' s easy to c o m p u t e is the
m e a n p red ic t ion e r ror or m e a n devia t ion, the ave rage
of IM - A I . Also, since

m d e v 2 (~ _ ~ I M A 0 2 = - _> ~ I M - A I 2 = ~ 2

mean deviation is a more conservative (i.e., larger) es-
timate of variation than standard deviation. 15

There's often a simple relation between mdev and
sdev. E.g., if the prediction errors are normally dis-
tributed, m d e v = X / ' - ~ s d e v . For m o s t c o m m o n distri-
bu t ions the factor to go f r o m sdev to m d e v is nea r one

15Mathematical purists may note that I elided a factor of n , the
number of samples, from the previous inequality. It makes no differ-
ence in the result.

(X / - ~ ~ 1.25). I.e., m d e v is a g o o d a p p r o x i m a t i o n of
sdev and is m u c h easier to compu te .

A.2 Practice

Fast es t imators for ave rage A and m e a n dev ia t ion D
g iven m e a s u r e m e n t M fo l low direct ly f r o m the above.
Both es t imators c o m p u t e m e a n s so there are two in-
s tances of the RFC793 a lgor i thm:

E r r = M - A

A ~-- A + g E r r

D ~ D + g(lErrl - D)

To c o m p u t e quickly, the above s h o u l d be d o n e in in-
teger ari thmetic. But the express ions conta in fract ions
(g < 1) so some scal ing is n e e d e d to keep e v e r y t h i n g
integer. A r e c i p r o c a l p o w e r of 2 (i.e., g = 1 /2 n for s o m e

ACM SIGCOMM -169 - Computer Communication Review

o

i o 6

>=

c5

¢o

I I I I I
20 40 60 80 1 O0

T i m e (sec)

120

Figure 10 showed the old TCPs were using 25% more than the bottleneck link bandwidth .
Thus, once the bottleneck queue filled, 25% of the the senders ' packets were being
discarded. If the discards, and only the discards, were retransmitted, the senders would
have received the full 25 KBps link bandwid th (i.e., their behavior would have been anti-
social but not self-destructive). But fig. 8 noted that around 25% of the link bandwid th
was unaccounted for.
Here we average the total amount of data acked per five second interval. (This gives
the effective or delivered bandwid th of the link.) The thin line is once again the old TCPs.
Note that only 75% of the link bandwid th is being used for data (the remainder must
have been used by retransmissions of packets that d idn ' t need to be retransmitted).
The thick line shows delivered bandwid th for the new TCPs. There is the same slow-start
and turn-on transient followed by a long per iod of operat ion right at the link bandwidth .

Figure 11: Effective bandwidth of old and new TCPs

n) is a p a r t i c u l a r l y g o o d cho ice for g s ince the sca l ing
can b e i m p l e m e n t e d w i t h shif ts . M u l t i p l y i n g t h r o u g h
b y 1/g g ives

2hA *- 2hA + Err

2riD <-- 2riD + (IErrl - D)

To m i n i m i z e r o u n d - o f f er ror , the sca l ed v e r s i o n s of
A and D, SA and SD, s h o u l d b e k e p t r a t h e r t han the
u n s c a l e d ve r s ions . P i c k i n g g = .125 = ~ (close to the .1
s u g g e s t e d in RFC793) a n d e x p r e s s i n g the a b o v e in C:

M -= (SA >> 3); /* =

SA += M;

if (M < 0)

M = -M; /* =

M -= (SD >> 3);

SD += M;

Err */

abs (Err) * /

I t ' s n o t n e c e s s a r y to u se the s a m e g a i n for A a n d
D . To force the t i m e r to go u p q u i c k l y in r e s p o n s e

to c h a n g e s in the RTT, i t ' s a g o o d i d e a to g ive D a
l a rge r gain . In pa r t i cu l a r , b e c a u s e of w i n d o w - d e l a y
m i s m a t c h , t he re a re o f t en RTT ar t i fac t s a t i n t e g e r m u l -
t ip les of the w i n d o w size. 16 To f i l ter these , one w o u l d
l ike 1/g in the A e s t i m a t o r to b e at l eas t as l a rge as the
w i n d o w size (in packe t s) a n d 1/g in the D e s t i m a t o r to
b e less t han the w i n d o w size. 17

U s i n g a ga in of .25 on the d e v i a t i o n a n d c o m p u t i n g
the r e t r a n s m i t t imer , rto, as A + 2D, the f ina l t i m e r c o d e

16E.g., see packets 10-50 of figure 5. Note that these window ef-
fects are due to characteristics of the Arpa/Milnet subnet. In general,
window effects on the timer are at most a second-order consideration
and depend a great deal on the underlying network. E.g., if one were
using the Wideband with a 256 packet window, 1/256 would not be
a good gain for A (1/16 might be).

17 Although it may not be obvious, the absolute value in the calcu-
lation of D introduces an asymmetry in the timer: Because D has
the same sign as an increase and the opposite sign of a decrease, more
gain in D makes the timer go up quickly and come down slowly, 'au-
tomatically' giving the behavior suggested in [Mi183]. E.g., see the
region between packets 50 and 80 in figure 6.

ACM SIGCOMM - 1 7 0 - Computer Communication Review

. '

I I I
o 0 20 40 60 80

Time (sec)

Because of the five second averaging time (needed to smooth out the spikes in the old
T C P data), the congestion avoidance window policy is difficult to make out in figures
10 and 11. Here we show effective throughput (data acked) for T C P s with congestion
control, averaged over a three second interval.
When a packet is dropped, the sender sends until it fills the window, then stops until
the retransmission timeout. Since the receiver cannot ack data beyond the dropped
packet, on this plot we'd expect to see a negative-going spike whose amplitude equals
the sender's window size (minus one packet). If the retransmit happens in the next
interval (the intervals were chosen to match the retransmit timeout), we'd expect to see
a positive-going spike of the same amplitude when receiver acks its cached data. Thus
the height of these spikes is a direct measure of the sender's window size.
The data clearly shows three of these events (at 15, 33 and 57 seconds) and the window
size appears to be decreasing exponentially. The dotted line is a least squares fit to the
six window size measurements obtained from these events. The fit time constant was 28
seconds. (The long time constant is due to lack of a congestion avoidance algorithm in
the gateway. With a 'drop' algorithm running in the gateway, the time constant should
be around 4 seconds)

Figure 12: Window adjustment detail

looks like:

M -= (SA > > 3);

SA += M;

if (M < 0)

M = -M;

M -= (SD >> 2);

SD += M;

rto = ((SA >> 2) + SD) >> i;

Note that S A and S D are addedbefore the final shift. In
general, this will correctly round rto: Because of the S A
truncation when comput ing M - A , S A will converge
to the true mean rounded up to the next tick. Likewise
w i t h S D . Thus, on the average, there is half a tick of
bias in each. The r t o computat ion should be rounded

by half a tick and one tick needs to be added to account
for sends being phased randomly with respect to the
clock. So, the 1.5 tick bias contribution from A + 2D
equals the desired half tick rounding plus one tick phase
correction.

B The combined slow-start with
congestion avoidance algorithm

The sender keeps two state variables for congestion con-
trol: a congestion window, cwnd, and a threshold size,
ssthresh, to switch between the two algorithms. The
sender ' s output routine always sends the m i n i m u m of
cwnd and the w indow advertised by the receiver. On

ACM SIGCOMM -171- Computer Communication Review

a timeout, half the current window size is recorded in
ssthresh (this is the multiplicative decrease part of the
congestion avoidance algorithm), then cwnd is set to
1 packet (this initiates slow-start). When new data is
acked, the sender does

if (cwnd < ssthresh)

/* if we're still doing slow-start

* open window exponentially */

cwnd += 1

else

/* otherwise do Congestion

* Avoidance increment-by-i */

cwnd += i/cwnd

Thus slow-start opens the window quickly to what
congestion avoidance thinks is a safe operating point
(half the window that got us into trouble), then con-
gestion avoidance takes over and slowly increases the
window size to probe for more bandwidth becoming
available on the path.

C Window Adjustment Policy

A reason for using ½ as a the decrease term, as op-
posed to the 7 in [JRC87], was the following handwav-
ing: When a packet is dropped, you're either starting
(or restarting after a drop) or steady-state sending. If
you're starting, you know that half the current window
size 'worked', i.e., that a window's worth of packets
were exchanged with no drops (slow-start guarantees
this). Thus on congestion you set the window to the
largest size that you know works then slowly increase
the size. If the connection is steady-state running and
a packet is dropped, it's probably because a new con-
nection started up and took some of your bandwidth.
We usually run our nets with p < 0.5 so it's probable
that there are now exactly two conversations sharing
the bandwidth. I.e., you should reduce your window
by half because the bandwidth available to you has been
reduced by half. And, if there are more than two con-
versations sharing the bandwidth, halving your win-
dow is conservative - - and being conservative at high
traffic intensities is probably wise.

Although a factor of two change in window size
seems a large performance penalty, in system terms the
cost is negligible: Currently, packets are dropped only
when a large queue has formed. Even with an [ISO86]
'congestion experienced' bit to force senders to reduce
their windows, we're stuck with the queue because the
bottleneck is running at 100% utilization with no excess
bandwidth available to dissipate the queue. If a packet
is tossed, some sender shuts up for two RTT, exactly the

time needed to empty the queue. If that sender restarts
with the correct window size, the queue won't reform.
Thus the delay has been reduced to minimum without
the system losing any bottleneck bandwidth.

The 1-packet increase has less justification than the
0.5 decrease. In fact, it's almost certainly too large. If the
algorithm converges to a window size of w, there are
O(w 2) packets between drops with an additive increase
policy. We were shooting for an average drop rate of
< 1% and found that on the Arpanet (the worst case of
the four networks we tested), windows converged to
8-12 packets. This yields I packet increments for a 1%
average drop rate.

But, since we've done nothing in the gateways, the
window we converge to is the maximum the gateway
can accept without dropping packets. I.e., in the terms
of [JRC87], we are just to the left of the cliff rather than
just to the right of the knee. If the gateways are fixed
so they start dropping packets when the queue gets
pushed past the knee, our increment will be much too
aggressive and should be dropped by about a factor of
four (since our measurements on an unloaded Arpanet
place its 'pipe size' at 4-5 packets). It appears trivial to
implement a second order control loop to adaptively de-
termine the appropriate increment to use for a path. But
second order problems are on hold until we've spent
some time on the first order part of the algorithm for
the gateways.

ACM SIGCOMM -172- Computer Communication Review

References

[Ald87]

[Cla82]

[Edg831

[Fe171]

[IETF87]

[IETF88]

[ISO86]

[Jai86a]

[Jai86b]

[JRC871

[Kle76]

[Kli87]

[KP87]

David J. Aldous. Ultimate instability of exponen-
tial back-off protocol for acknowledgment based
transmission control of random access communi-
cation channels. IEEE Transactions on Information
Theory, IT-33(2), March 1987.

David Clark. Window and Acknowlegement Strat-
egy in TCP. ARPANET Working Group Requests for
Comment, DDN Network Information Center, SRI
International, Menlo Park, CA, July 1982. RFC-813.

Stephen William Edge. An adaptive timeout algo-
rithm for retransmission across a packet switching
network. In Proceedings of SIGCOMM "83. ACM,
March 1983.

William Feller. Probability Theory and its Applica-
tions, volume II. John Wiley & Sons, second edi-
tion, 1971.

Proceedings of the Sixth Internet Engineering Task
Force, Boston, MA, April 1987. Proceedings avail-
able as NIC document IETF-87/2P from DDN Net-
work Information Center, SRI International, Menlo
Park, CA.

Proceedings of the Ninth Internet Engineering Task
Force, San Diego, CA, March 1988. Proceedings
available as NIC document IETF-88/?P from DDN
Network Information Center, SRI International,
Menlo Park, CA.

International Organization for Standardization.
ISO International Standard 8473, Information Pro-
cessing Systems - - Open Systems Interconnection - -
Connectionless-mode Network Service Protocol Specie-
cation, March 1986.

Raj Jain. Divergence of timeout algorithms for
packet retransmissions. In Proceedings Fifth An-
nual International Phoenix Conference on Computers
and Communications, Scottsdale, AZ, March 1986.

Raj Jain. A timeout-based congestion control
scheme for window flow-controlled networks.
IEEE Journal on Selected Areas in Communications,
SAC-4(7), October 1986.

Raj Jain, K.K. Ramakrishnan, and Dah-Ming Chiu.
Congestion avoidance in computer networks with
a connectionless network layer. Technical Report
DEC-TR-506, Digital Equipment Corporation, Au-
gust 1987.

Leonard Kleinrock. Queueing Systems, volume II.
John Wiley & Sons, 1976.

Charley Kline. Supercomputers on the Internet: A
case study. In Proceedings of SIGCOMM "87. ACM,
August 1987.

Phil Karn and Craig Partridge. Estimating round-
trip times in reliable transport protocols. In Pro-
ceedings of SIGCOMM '87. ACM, August 1987.

[LS83]

[Mi183]

[Nag84]

[PP87]

[RFC793]

[Zha86]

Lennart Ljung and Torsten S6derstr6m. Theory and
Practice of Recursive Identification. MIT Press, 1983.

David Mills. Internet Delay Experiments. ARPANET
Working Group Requests for Comment, DDN Net-
work Information Center, SRI International, Menlo
Park, CA, December 1983. RFC-889.

John Nagle. Congestion Control in IP/TCP Inter-
networks. ARPANET Working Group Requests for
Comment, DDN Network Information Center, SRI
International, Menlo Park, CA, January 1984. RFC-
896.

W. Prue and J. Postel. Something A Host Could Do
with Source Quench. ARPANET Working Group Re-
quests for Comment, DDN Network Information
Center, SRI International, Menlo Park, CA, July
1987. RFC-1016.

Jon Postel, editor. Transmission Control Protocol
Specification. ARPANET Working Group Requests
for Comment, DDN Network Information Cen-
ter, SRI International, Menlo Park, CA, September
1981. RFC-793.

Lixia Zhang. Why TCP timers don't work well. In
Proceedings of SIGCOMM '86. ACM, August 1986.

ACM SIGCOMM -173- Computer Communication Review

