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In October  of '86, the Internet  had  the first of what  
became a series of 'congestion collapses'. During this 
period,  the data  t h roughpu t  f rom LBL to UC Berke- 
ley (sites separated by  400 yards  and three IMP hops) 
d ropped  f rom 32 Kbps to 40 bps. Mike Karels 1 and I 
were fascinated by  this sudden  factor-of-thousand drop 
in ba ndwid th  and embarked  on an investigation of w h y  
things had  gotten so bad. We wondered ,  in particular, 
if the 4.3BSD (Berkeley UNIX) TCP was mis-behaving or 
if it could be tuned  to work  better  under  abysmal net- 
work  conditions. The answer  to bo th  of these questions 
was "yes".  

Since that time, we have pu t  seven new algorithms 
into the 4BSD TCP: 

(i) round-tr ip- t ime variance estimation 

(ii) exponential  retransmit  t imer backoff 

(iii) slow-start 

(iv) more  aggressive receiver ack policy 

(v) dynamic  w indow sizing on congestion 

(vi) Karn's  c lamped  retransmit  backoff  

(vii) fast retransmit  

Our  measurements  and the reports  of beta testers sug- 
gest that the final p roduc t  is fairly good at dealing with 
congested condit ions on the Internet. 

This paper  is a brief  descript ion of (i) - (v) a n d  the  
rationale behind  them. (vi) is an algori thm recently de- 
ve loped  by  Phil Karn of Bell Communicat ions  Research, 
described in [KP87]. (vii) is described in a soon-to-be- 
publ ished RFC. 

* This work was supported in part by the U.S. Department of En- 
ergy under Contract Number DE-AC03-76SF00098. 

1 The algorithms and ideas described in this paper were developed 
in collaboration with Mike Karels of the UC Berkeley Computer Sys- 
tem Research Group. The reader should assume that anything clever 
is due to Mike. Opinions and mistakes are the property of the author. 

Algori thms (i) - (v) spring from one observation: 
The flow on a TCP connect ion (or ISO TP-4 or Xerox NS 
SPP connection) should obey a 'conservat ion of pack- 
ets' principle. And,  if this principle were  obeyed,  con- 
gestion collapse would  become the except ion rather 
than the rule. Thus congest ion control  involves find- 
ing places that violate conservat ion and fixing them. 

By 'conservat ion of packets '  I m ean  that for a con- 
nection 'in equil ibrium',  i.e., running  stably wi th  a full 
w in d o w  of data in transit, the packet  flow is what  a 
physicist would  call 'conservative' :  A new packet  isn't 
pu t  into the ne twork  until  an old packet  leaves. The 
physics of flow predicts that systems wi th  this p roper ty  
should be robust  in the face of congestion. Observat ion 
of the Internet  suggests that it was not  part icularly ro- 
bust. Why  the discrepancy? 

There are only three ways  for packet  conservat ion to 
fail: 

1. The connection doesn ' t  get to equil ibrium, or 

2. A sender  injects a new packet  before an old packet  
has exited, or 

3. The equil ibrium can' t  be reached because of re- 
source limits along the path. 

In the following sections, we treat each of these in turn. 

1 Getting to Equilibrium: 
Slow-start 

Failure (1) has to be f rom a connect ion that is either 
starting or restarting after a packet  loss. Another  way  
to look at the conservat ion p roper ty  is to say that the 
sender  uses acks as a 'clock' to strobe new packets into 
the network.  Since the receiver can generate acks no  
faster than data packets can get th rough  the network,  
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This is a schematic representation of a sender and receiver on high bandwidth networks 
connected by a slower, long-haul net. The sender is just starting and has shipped a 
window's  worth of packets, back-to-back. The ack for the first of those packets is about 
to arrive back at the sender (the vertical line at the mouth of the lower left funnel). 
The vertical direction is bandwidth, the horizontal direction is time. Each of the shaded 
boxes is a packet. Bandwidth x Time -- Bits so the area of each box is the packet size. 
The number of bits doesn't  change as a packet goes through the network so a packet 
squeezed into the smaller long-haul bandwidth must spread out in time. The time 
Pb represents the minimum packet spacing on the slowest link in the path (the bottle- 
neck). As the packets leave the bottleneck for the destination net, nothing changes the 
inter-packet interval so on the receiver's net packet spacing P, -- Pb. If the receiver 
processing time is the same for all packets, the spacing between acks on the receiver's 
net A, = Pr = Pb. If the time slot Pb was big enough for a packet, it's big enough for 
an ack so the ack spacing is preserved along the return path. Thus the ack spacing on 
the sender's net As = Pb. 
So, if packets after the first burst are sent only in response to an ack, the sender 's packet 
spacing will exactly match the packet time on the slowest link in the path. 

Figure 1: Window Flow Control 'Self-clocking' 

the p ro toco l  is ' self  c lock ing '  (fig. 1). Self c locking sys- 
t ems  au tomat i ca l ly  adjus t  to b a n d w i d t h  and  de lay  vari-  
a t ions and  h a v e  a w i d e  d y n a m i c  r ange  ( impor tan t  con-  
s ider ing  tha t  TCP spans  a r ange  f r o m  800 M b p s  C r a y  
channe ls  to 1200 bps  packe t  rad io  links). But the same  
th ing  that  m a k e s  a self-clocked sys t em stable w h e n  it 's 
r u n n i n g  m a k e s  it h a r d  to start  - -  to  get  da ta  f lowing  
there m u s t  be  acks to clock ou t  packets  b u t  to get  acks 
there m u s t  be  da ta  f lowing.  

To start  the 'c lock ' ,  w e  d e v e l o p e d  a slow-start al- 
g o r i t h m  to g r a d u a l l y  increase the a m o u n t  of  da ta  in- 
transit. 2 A l t h o u g h  w e  flatter ourse lves  that  the des ign  

2Slow-start is quite similar to the CUTE algorithm described in 
[Jai86b]. We didn't know about CUTE at the time we were devel- 
oping slow-start but we should have--CUTE preceded our work by 
several months. 

When describing our algorithm at the Feb., 1987, Internet Engineer- 
ing Task Force (IETF) meeting, we called it soft-start, a reference to an 
electronics engineer's technique to limit in-rush current. The name 

of  this a lgo r i thm is ra ther  subtle,  the i m p l e m e n t a t i o n  is 
trivial - -  one  n e w  state var iable  a n d  three lines of  code  
in the sender :  

• A d d  a congestion window, c w n d ,  to the per-  
connec t ion  state. 

• W h e n  s tar t ing  or  res tar t ing  after  a loss, set c w n d  
to one  packet .  

• O n  each ack for n e w  data,  increase c w n d  b y  one 
packet .  

• W h e n  sending ,  send  the m i n i m u m  of the re- 
ce iver ' s  adver t i sed  w i n d o w  and  cwnd .  

slow-start was coined by John Nagle in a message to the IETF mailing 
list in March, '87. This name was clearly superior to ours and we 
promptly adopted it. 
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The horizontal direction is time. The continuous time line has been chopped into one- 
round-trip-time pieces stacked vertically with increasing time going down the page. The 
grey, numbered boxes are packets. The white numbered boxes are the corresponding 
acks. 
As each ack arrives, two packets are generated: one for the ack (the ack says a packet 
has left the system so a new packet is added to take its place) and one because an ack 
opens the congestion window by one packet. It may be clear from the figure why an 
add-one-packet-to-window policy opens the window exponentially in time. 
If the local net is much faster than the long haul net, the ack's two packets arrive at the 
bottleneck at essentially the same time. These two packets are shown stacked on top of 
one another (indicating that one of them would have to occupy space in the gateway's 
outbound queue). Thus the short-term queue demand on the gateway is increasing 
exponentially and opening a window of size W packets will require W/2 packets of 
buffer capacity at the bottleneck. 

Figure 2: The Chronology of a Slow-start 

Actually, the slow-start  w indow increase isn't that 
slow: it takes t ime R log 2 W where  R is the round-  
trip-time and W is the w indow size in packets (fig. 2). 
This means  the w i n d o w  opens quickly enough to have 
a negligible effect on performance,  even on links with 
a large b a n d w i d t h - d e l a y  product .  And the algori thm 
guarantees  that a connect ion will source data at a rate at 
most  twice the m a x i m u m  possible on the path. Without 
slow-start, by  contrast,  when  10 Mbps Ethernet  hosts 
talk over  the 56 Kbps Arpanet  via IP gateways,  the first- 
hop  gateway sees a burst  of eight packets del ivered at 
200 times the pa th  bandwidth .  This burst  of packets 
often puts  the connect ion into a persistant failure mode  
of cont inuous  retransmissions (figures 3 and 4). 

2 Conservation at equilibrium: 
round-trip timing 

Once data is f lowing reliably, problems (2) and (3) 
should be addressed.  Assuming that the protocol  im- 
plementat ion is correct, (2) mus t  represent  a failure of 
sender ' s  retransmit  timer. A good round  trip t ime es- 
timator, the core of the retransmit  timer, is the single 
most  impor tant  feature of any protocol  implementa-  
tion that expects to survive heavy  load. And  it is fre- 
quent ly  botched ([Zha86] and [Jai86a] describe typical 
problems). 

One mistake is not  estimating the variation, aR, of 
the round  trip time, R. From queuing theory  we know 
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Trace data of  the start of  a TCP conversat ion be tween t w o  Sun 3/50s runn ing  Sun os 3.5 
(the 4.3BSD TCP). The two Suns were on different Ethemets connected by IP gateways 
driving a 230.4 Kbs point-to-point l ink (essentially the setup shown in fig. 7). 
Each dot is a 512 data-byte packet. The x-axis is the time the packet was sent. The y-axis 
is the sequence number in the packet header. Thus a vertical array of dots indicate 
back-to-back packets and two dots with the same y but different x indicate a retransmit. 
'Desirable' behavior on this graph would be a relatively smooth line of clots extending 
diagonally from the lower left to the upper right. The slope of this line would equal the 
available bandwidth. Nothing in this trace resembles desirable behavior. 
The dashed line shows the 20 KBps bandwidth available for this connection. Only 35% 
of this bandwidth was used; the rest was wasted on retransmits. Almost everything is 
retransmitted at ]east once and data from 54 to 58 KB is sent five times. 

Figure 3: Startup behavior of TCP without Slow-start 

that R and the variation in R increase quickly with 
load. If the load is p (the ratio of average arrival rate to 
average departure rate), R and aR scale like (1 - p ) - l .  
To make this concrete, if the network is running at 75% 
of capacity, as the Arpanet  was in last April 's collapse, 
one should expect round-trip-time to vary by a factor 
of sixteen (±2~). 

The TCP protocol specification, [RFC793], suggests 
estimating mean round trip time via the low-pass filter 

R = c~R + ( 1 -  ~ )M 

where R is the average RTT estimate, M is a round trip 
time measurement  from the most recently acked data 
packet, and c~ is a filter gain constant with a suggested 
value of 0.9. Once the R estimate is updated,  the re- 
transmit t imeout interval, rto, for the next packet sent 
is set to fiR. 

The parameter fl accounts for RTT variation (see 
[Cla82], section 5). The suggested fl = 2 can adapt  
to loads of at most  30%. Above this point, a connection 
will respond to load increases by retransmitt ing packets 
that have only been delayed in transit. This forces the 
network to do useless work, wasting bandwid th  on du- 
plicates of packets that will be delivered, at a time when  
it's known to be having trouble with useful work. I.e., 
this is the network equivalent of pouring gasoline on a 
fire. 

We developed a cheap method for estimating vari- 
ation (see appendix A) 3 and the resulting retransmit 
timer essentially eliminates spurious retransmissions. 

3 We are far from the first to recognize that t ransport  needs to esti- 
mate both mean and variation. See, for example, [Edg83]. But we do 
think our estimator is simpler than most. 
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Same conditions as the previous figure (same time of day, same Suns, same network 
path, same buffer and window sizes), except the machines were running the 4.3+TCP 
with slow-start. 
No bandwidth is wasted on retransmits but two seconds is spent on the slow-start so 
the effective bandwidth of this part of the trace is 16 KBps - -  two times better than 
figure 3. (This is slightly misleading: Unlike the previous figure, the slope of the trace 
is 20 KBps and the effect of the 2 second offset decreases as the trace lengthens. E.g., 
if this trace had run a minute, the effective bandwidth would have been 19 KBps. The 
effective bandwidth without slow-start stays at 7 KBps no matter how long the trace.) 

Figure 4: Startup behavior of TCP with Slow-start 

A pleasant side effect of estimating ~ rather than using 
a fixed value is that low load as well as high load per- 
formance improves,  particularly over high delay paths 
such as satellite links (figures 5 and 6). 

Another  timer mistake is in the backoff after a re- 
transmit: If a packet  has to be retransmitted more  than 
once, h o w  should the retransmits be spaced? Only one 
scheme will work,  exponential  backoff, but  proving this 
is abi t  involved. 4 To finesse a proof, note that a ne twork  
is, to a very  good approximation,  a linear system. That 
is, it is composed  of elements that behave like linear op- 
erators m integrators, delays, gain stages, etc. Linear 

4 An in-progress paper attempts a proof. If an IP gateway is viewed 
as a 'shared resource with fixed capacity', it bears a remarkable resem- 
blance to the 'ether' in an Ethernet. The retransmit backoff problem is 
essentially the same as showing that no backoff'slower' than an expo- 
nential will guarantee stability on an Ethernet. Unfortunately, in the- 
ory even exponential backoff won't guarantee stability (see [Aid87]). 
Fortunately, in practise we don't have to deal with the theorist's infi- 
nite user population and exponential is "good enough". 

system theory says that if a system is stable, the stability 
is exponential. This suggests that  an unstable system 
(a ne twork  subject to r andom load shocks and  prone to 
congestive collapse s ) can be stabilized by  adding  some 
exponential damping  (exponential timer backoff) to its 
pr imary  excitation (senders, traffic sources). 

3 Adapting to the path: congestion 
avoidance 

If the timers are in good shape, it is possible to state with 
some confidence that a t imeout  indicates a lost packet 
and not a broken timer. At this point, something can be 
done about (3). Packets get lost for two reasons: they 

s The phrase congestion collapse (describing a positive feedback in- 
stability due to poor retransmit timers) is again the coinage of John 
Nagle, this time from [Nag84]. 
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Trace data showing per-packet round trip time on a well-behaved Arpanet connection. 
The x-axis is the packet number (packets were numbered sequentially, starting with one) 
and the y-axis is the elapsed time from the send of the packet to the sender's receipt of 
its ack. During this portion of the trace, no packets were dropped or retransmitted. 
The packets are indicated by a dot. A dashed line connects them to make the sequence 
easier to follow. The solid line shows the behavior of a retransmit timer computed 
according to the rules of RFC793. 

Figure 5: Performance of an RFC793 retransmit timer 

are d a m a g e d  in transit,  or the ne twork  is congested and  
somewhere  on the pa th  there was  insufficient buffer  
capacity. On mos t  ne twork  paths,  loss due  to d a m a g e  
is rare (<< 1%) so it is p robable  that a packet  loss is due  
to congest ion in the network.  6 

A 'congest ion avoidance '  strategy, such as the one 
p roposed  in [JRC87], will have  two components :  The 
ne twork  m u s t  be able to signal the t ranspor t  endpoints  
that  congest ion is occurr ing (or about  to occur). And  the 
endpoin ts  mus t  have  a policy that  decreases utilization 
if this signal is received and  increases util ization if the 
signal isn ' t  received. 

If packet  loss is (almost) a lways  due  to congest ion 
and  if a t imeout  is (almost) a lways  due  to a lost packet,  
we have  a good  candidate  for the ' ne twork  is congested '  
signal. Part icularly since this signal is del ivered au- 
tomatical ly by  all existing networks ,  wi thout  special 

6 The congestion control scheme we propose is insensitive to dam- 
age loss until the loss rate is on the order of one packet per window 
(e.g., 12-15% for an 8 packet window). At this high loss rate, any 
window flow control scheme will perform badly--a 12% loss rate de- 
grades TCP throughput by 60%. The additional degradation from the 
congestion avoidance window shrinking is the least of one's prob- 
lems. A presentation in [IETF88] and an in-progress paper address 
this subject in more detail. 

modif icat ion (as opposed  to [JRC87] which  requires a 
new bit in the packet  headers  and  a modif icat ion to all 
existing ga teways  to set this bit). 

The other par t  of a congest ion avo idance  strategy, 
the endnode  action, is a lmost  identical in the DEC/ISO 

scheme and o u r  TCP 7 and follows direct ly f rom a first- 
order  t ime-series mode l  of the network:  Say ne twork  
load is measu red  b y  average  queue  length over  fixed 
intervals of some appropr ia te  length (something near  
the round  trip time). If Gi is the load at interval  /, 
an unconges ted  ne twork  can be  mode l ed  b y  saying Gi 
changes s lowly compared  to the sampl ing  time. I.e., 

L i : N  

( N  constant). If the ne twork  is subject to congestion, 
this zeroth order  mode l  breaks  down.  The average  
queue  length becomes  the s u m  of two terms, the N 
above that accounts for the average  arrival  rate of new 
traffic and  intrinsic delay, and  a new te rm that  accounts  
for the fraction of traffic left over  f rom the last t ime in- 
terval  and the effect of this left-over traffic (e.g., induced  

7This is not an accident: We copied Jain's scheme after hearing 
his presentation at [IETE87] and realizing that the scheme was, in a 
sense, universal. 
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Same data as above but the solid line shows a retransmit timer computed according to 
the algorithm in appendix A. 

Figure 6: Performance of a Mean+Variance retransmit timer 

retransmits): 
Li = N + 7Li-1 

(These are the first two terms in a Taylor series expan- 
sion of L(t) .  There is reason to believe one might  even- 
tually need  a three term, second order  model ,  bu t  not  
until  the Internet  has g rown substantially.) 

When  the ne twork  is congested,  7 mus t  be large and 
the queue  lengths will start increasing exponentially, s 
The system will stabilize only if the traffic sources throt- 
tle back at least as quickly as the queues are growing. 
Since a source controls load in a window-based  proto- 
col by  adjusting the size of the window, W ,  we end up  
with the sender  policy 

On congestion: 

Wi = dWi_l (d < 1) 

I.e., a mult ipl icat ive decrease of the w indow size (which 
becomes an exponential  decrease over t ime if the con- 
gestion persists). 

If there 's  no congestion, 7 mus t  be near  zero and the 
load approximate ly  constant. The ne twork  announces,  
via a d ropped  packet,  when  demand  is excessive bu t  
says nothing if a connect ion is using less than its fair 

SI.e., the system behaves like Li ,.~ 7Li -1 ,  a difference equation 
with the solution 

Ln = 7n Lo 

which goes exponentially to infinity for any 7 > 1. 

share (since the ne twork  is stateless, it cannot  know 
this). Thus a connect ion has to increase its b andwid th  
utilization to find out  the current  limit. E.g., you  could 
have been sharing the path  wi th  someone  else and con- 
verged to a w in d o w  that gives you  each half  the avail- 
able bandwidth .  If she shuts down,  50% of the band-  
width  will be wasted unless y o u r  w i n d o w  size is in- 
creased. What  should the increase policy be? 

The first thought  is to use a symmetric ,  multiplica- 
tive increase, possibly with a longer t ime constant,  
Wi = bWi-1, 1 < b <_ 1/d. This is a mistake. The result  
will oscillate wildly and, on the average, deliver poor  
throughput .  There is an analytic reason for this bu t  it's 
tedious to derive. It has to do  wi th  that fact that it is 
easy to drive the net  into saturation bu t  ha rd  for the net  
to recover (what [Kle76], chap. 2.1, calls the rush-hour 
effect). 9 Thus overest imating the available b andwid th  

9In fig. 1, note that the 'pipesize' is 16 packets, 8 in each path, but 
the sender is using a window of 22 packets. The six excess packets 
will form a queue at the entry to the bottleneck and that queue cannot 
shrink, even though the sender carefully clocks out packets at the 
bottleneck link rate. This stable queue is another, unfortunate, aspect 
of conservation: The queue would shrink only if the gateway could 
move packets into the skinny pipe faster than the sender dumped 
packets into the fat pipe. But the system tunes itself so each time the 
gateway pulls a packet off the front of its queue, the sender lays a 
new packet on the end. 

A gateway needs excess output capacity (i.e., p < 1) to dissipate a 
queue and the clearing time will scale like (1 - p)-2 ([Kle76], chap. 2 
is an excellent discussion of this). Since at equilibrium our trans- 
port connection 'wants' to run the bottleneck link at 100% (p = 1), 
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is costly. But an exponential, almost regardless of its 
time constant, increases so quickly that overestimates 
are inevitable. 

Without justification, I'll state that the best increase 
policy is to make small, constant changes to the window 
size: 

On no congestion: 

W~ = W~_~ + ~ (~ << Wmo=) 

where W,.,,a= is the pipesize (the delay-bandwidth prod- 
uct of the path minus protocol overhead - -  i.e., the 
largest sensible window for the unloaded path). This 
is the additive increase / multiplicative decrease policy 
suggested in [JRC87] and the policy we've implemented 
in TCP. The only difference between the two implemen- 
tations is the choice of constants for d and u. We used 
0.5 and I for reasons partially explained in appendix C. 
A more complete analysis is in yet another in-progress 
paper. 

The preceding has probably made the congestion 
control algorithm sound hairy but it's not. Like slow- 
start, it's three lines of code: 

• On any timeout, set cwnd to half the current win- 
dow size (this is the multiplicative decrease). 

• On each ack for new data, increase cwnd by 
1/cwnd (this is the additive increase). 10 

• When sending, send the minimum of the re- 
ceiver's advertised window and cwnd. 

Note that this algorithm is only congestion avoidance, 
it doesn't include the previously described slow-start. 
Since the packet loss that signals congestion will re- 
sult in a re-start, it will almost certainly be necessary 

we have to be sure that during the non-equilibrium window adjust- 
ment, our control policy allows the gateway enough free bandwidth 
to dissipate queues that inevitably form due to path testing and traf- 
fic fluctuations. By an argument similar to the one used to show 
exponential timer backoff is necessary, it's possible to show that an 
exponential (multiplicative) window increase policy will be 'faster' 
than the dissipation time for some traffic mix and, thus, leads to an 
unbounded growth of the bottleneck queue. 

10 This increment rule may be less than obvious. We want to in- 
crease the window by at most one packet over a time interval of 
length R (the round trip time). To make the algorithm "self-clocked', 
it's better to increment by a small amount on each ack rather than by 
a large amount at the end of the interval. (Assuming, of course, that 
the sender has effective silly window avoidance (see [Cla82], section 
3) and doesn't  attempt to send packet fragments because of the frac- 
tionally sized window.) A window of size cwnd packets will generate 
at most cwnd acks in one R. Thus an increment of 1/cwnd per ack 
will increase the window by at most one packet in one R. In TCP, 
windows and packet sizes are in bytes so the increment translates to 
maxseg*maxseg/cwnd where maxseg is the maximum segment size and 
cwnd is expressed in bytes, not packets. 

to slow-start in addition to the above. But, because 
both congestion avoidance and slow-start are triggered 
by a timeout and both manipulate the congestion win- 
dow, they are frequently confused. They are actually in- 
dependent algorithms with completely different objec- 
tives. To emphasize the difference, the two algorithms 
have been presented separately even though in prac- 
tise they should be implemented together. Appendix B 
describes a combined slow-start/congestion avoidance 
algorithm. 11 

Figures 7 through 12 show the behavior of TCP con- 
nections with and without congestion avoidance. Al- 
though the test conditions (e.g., 16 KB windows) were 
deliberately chosen to stimulate congestion, the test sce- 
nario isn't far from common practice: The Arpanet 
IMP end-to-end protocol allows at most eight packets 
in transit between any pair of gateways. The default 
4.3BSD window size is eight packets (4 KB). Thus si- 
multaneous conversations between, say, any two hosts 
at Berkeley and any two hosts at MIT would exceed 
the buffer capacity of the UCB-MIT IMP path and would 
lead 12 to the behavior shown in the following figures. 

4 F u t u r e  w o r k :  t h e  g a t e w a y  s i d e  o f  

c o n g e s t i o n  c o n t r o l  

While algorithms at the transport endpoints can insure 
the network capacity isn't exceeded, they cannot insure 

11We have also developed a rate-based variant of the congestion 
avoidance algorithm to apply to connectiontess traffic (e.g., domain 
server queries, RPC requests). Remembering that the goal of the in- 
crease and decrease policies is bandwidth adjustment, and that 'time' 
(the controlled parameter in a rate-based scheme) appears in the de- 
nominator of bandwidth, the algorithm follows immediately: The 
multiplicative decrease remains a multiplicative decrease (e.g., dou- 
ble the interval between packets). But subtracting a constant amount 
from interval does not result in an additive increase in bandwidth. 
This approach has been tried, e.g., [Kli87] and [PP87], and appears 
to oscillate badly. To see why, note that for an inter-packet interval 
/ and decrement c, the bandwidth change of a decrease-interval-by- 
constant policy is 

1 1 

7 --+ [ - c  

a non-linear, and destablizing, increase. 
An update policy that does result in a linear increase of bandwidth 

over time is 
Odi-- I 

a +  l i -1 
where I i  is the interval between sends when the i th  packet is sent 
and c~ is the desired rate of increase in packets per packet/sec. 

We have simulated the above algori thm and i t  appears to perform 
well. To test the predictions of that simulation against reality, we 
have a cooperative project with Sun Microsystems to prototype RPC 
dynamic congestion control algorithms using NFS as a test-bed (since 
NFS is known to have congestion problems yet it would be desirable 
to have it work over the same range of networks as TCP). 

12 did lead. 
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Test setup to examine the interaction of multiple, simultaneous TCP conversations shar- 
ing a bottleneck link. 1 MByte transfers (2048 512-data-byte packets) were initiated 3 
seconds apart from four machines at LBL to four machines at UCB, one conversation 
per machine pair (the dotted lines above show the pairing). All traffic went via a 230.4 
Kbps link connecting IP router csam at LBL to IP router cartan at UCB. 
The microwave link queue can hold up to 50 packets. Each connection was given a 
window of 16 KB (32 512-byte packets). Thus any two connections could overflow the 
available buffering and the four connections exceeded the queue capacity by 160%. 

Figure 7: Multiple conversation test setup 

fair sharing of that capacity. Only in gateways, at the 
convergence of flows, is there enough information to 
control sharing and fair allocation. Thus, we view the 
gateway 'congest ion detection'  a lgori thm as the next  
big step. 

The goal of this algori thm to send a signal to the 
endnodes  as early as possible, bu t  not  so early that the 
gateway becomes  starved for traffic. Since we plan 
to cont inue using packet  drops as a congestion sig- 
nal, ga teway 'self protect ion '  f rom a mis-behaving host 
should faU-out for free: That  host  will s imply have most  
of its packets d r opped  as the gateway trys to tell it 
that it 's using more  than its fair share. Thus, like the 
endnode  algorithm, the gateway algori thm should re- 
duce congest ion even if no endnode  is modif ied to do 
congest ion avoidance.  And  nodes  that do implement  
congestion avoidance will get their fair share of band-  
wid th  and a m i n i m u m  number  of packet  drops. 

Since congest ion grows exponentially, detecting it 
early is impor tant  - -  If detected early, small adjust- 
ments  to the senders '  windows  will cure it. Other- 
wise massive adjustments are necessary to give the net 
enough spare capacity to p u m p  out the backlog. But, 
given the burs ty  nature  of traffic, reliable detection is a 
non-trivial  problem. [JRC87] proposes  a scheme based 

on averaging be tween queue  regenerat ion points. This 
should yield good burs t  filtering bu t  we think it might  
have convergence problems unde r  high load or signif- 
icant second-order  dynamics  in the traffic. 13 We plan 
to use some of our  earlier work  on ARMAX models  for 
round- t r ip - t ime /queue  length predict ion as the basis 
of detection. Prel iminary results suggest  that this ap- 
proach works well  at high load, is immune  to second- 
order  effects in the traffic and is computa t ional ly  cheap 
enough to not  slow d o w n  kilopacket-per-second gate- 
ways. 
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the congestion detector becomes sluggish as congestion increases and 
its signal-to-noise ratio decreases dramatically. 
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Trace data from four simultaneous TCP conversations without congestion avoidance 
over the paths shown in figure 7. 
4,000 of 11,000 packets sent were retransmissions (i.e., half the data packets were re- 
transmitted). 
Since the link data bandwidth is 25 KBps, each of the four conversations should have 
received 6 KBps. Instead, one conversation got 8 KBps, two got 5 KBps, one got 0.5 
KBps and 6 KBps has vanished. 

Figure 8: Multiple, simultaneous TCPs with no congestion avoidance 

I a m  also deep ly  in debt  to Jeff Mogul  of DEC. With- 
out  Jeff 's pat ient  p rodd i ng  and  way-beyond-the-cal l -  
of -duty  efforts to help  m e  get a draft  submi t ted  before 
deadline,  this p a p e r  wou ld  never  have  existed. 

A A fast a lgor i thm for rtt m e a n  and 
variation 

A . 1  T h e o r y  

The RFC793 a lgor i thm for es t imat ing the m e a n  round  
trip t ime is one of the s implest  examples  of a class of es- 
t imators  called recursive prediction error or stochastic gra- 
dient algori thms.  In the past  20 years  these a lgor i thms 
have  revolut ionized es t imat ion and  control theory 14 
and  it 's p robab ly  wor th  looking at the RFC793 est ima- 
tor in some  detail. 

14 See, for example  [LS83]. 

Given  a new m e a s u r e m e n t  M of the RTT (round trip 
time), TCP upda tes  an est imate of the average  RTT A b y  

A *--- (1 - g)A + gM 

where  g is a 'ga in '  (0 < g < 1) that  should  be  related 
to the signal-to-noise ratio (or, equivalently,  variance) 
of M .  This makes  a more  sense, and  compu te s  faster, if 
we  rearrange and  collect t e rms  mul t ip l ied  by  g to get 

A ~ A + g ( M -  A) 

Think of A as a predict ion of the next  measurement .  
M - A is the error in that  predic t ion and  the expression 
above  says we  make  a new predict ion based  on the old 
predict ion plus  some fraction of the predict ion error. 
The predict ion error  is the s u m  of two components :  (1) 
error due  to 'noise '  in the m e a s u r e m e n t  ( random,  un-  
predictable effects like f luctuations in compe t ing  traffic) 
and (2) error  due  to a bad  choice of A. Calling the ran- 
d o m  error E~ and the es t imat ion error  Ee,  

A ~-- A + gE~ + gEe 
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Trace data f rom four  simultaneous TCP conversations using congestion avoidance over 
the paths shown in figure 7. 
89 of 8281 packets sent were retransmissions (i.e., 1% of the data packets had to be 
retransmitted). 
Two of the conversations got 8 KBps and two got 4.5 KBps (i.e., all the link bandwidth 
is accounted for - -  see fig. 11). The difference between the high and low bandwidth 
senders was due to the receivers. The 4.5 KBps senders were talking to 4.3BSD receivers 
which would delay an ack until 35% of the window was filled or 200 ms had passed 
(i.e., an ack was delayed for 5-7 packets on the average). This meant the sender would 
deliver bursts of 5-7 packets on each ack. 
The 8 KBps senders were talking to 4.3 + BSD receivers which would delay an ack for at 
most one packet (the author doesn't believe that delayed acks are a particularly good 
idea). I.e., the sender would deliver bursts of at most two packets. 
The probability of loss increases rapidly with burst size so senders talking to old-style 
receivers saw three times the loss rate (1.8% vs. 0.5%). The higher loss rate meant more 
time spent in retransmit wait and, because of the congestion avoidance, smaller average 
window sizes. 

F i g u r e  9: Mul t ip le ,  s i m u l t a n e o u s  T C P s  w i th  c o n g e s t i o n  a v o i d a n c e  

The gE~ term gives A a kick in the right direction while 
the gE,, term gives it a kick in a r andom direction. Over  
a number  of samples, the r andom kicks cancel each 
other out so this algori thm tends to converge to the 
correct average. But g represents a compromise:  We 
want  a large g to get mileage out of E¢ but  a small g 
to minimize the damage  from E~. Since the E¢ terms 
move  A toward  the real average no matter what  value 
we use for g, it 's almost always better to use a gain 
that 's  too small rather than one that 's  too large. Typical 
gain choices are 0.1-0.2 ( though it's a good idea to take 
long look at your  raw data before picking a gain). 

It 's probably obvious that A will oscillate r andomly  
around the true average and the s tandard  deviation of 
A will be g sdev(M).  Also that A converges to the 
true average exponentially with time constant  1/g. So 
a smaller g gives a stabler A at the expense of taking a 
much  longer time to get to the true average. 

If we want  some measure  of the variat ion in M,  say 
to compute  a good value for the TCP retransmit  timer, 
there are several alternatives. Variance, cr 2, is the con- 
ventional choice because it has some nice mathematical  
properties. But comput ing  variance requires squaring 
(M - A) so an estimator for it will contain a mul t iply  
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The thin line shows the total bandwidth used by the four senders without congestion 
avoidance (fig. 8), averaged over 5 second intervals and normalized to the 25 KBps link 
bandwidth. Note that the senders send, on the average, 25% more than will fit in the 
wire. 
The thick line is the same data for the senders with congestion avoidance (fig. 9). The 
first 5 second interval is low (because of the slow-start), then there is about 20 seconds 
of damped oscillation as the congestion control 'regulator'  for each TCP finds the correct 
window size. The remaining time the senders run at the wire bandwidth. (The activity 
around 110 seconds is a bandwidth 're-negotiation" due to connection one shutting 
down. The activity around 80 seconds is a reflection of the 'flat spot'  in fig. 9 where 
most of conversation two's bandwidth is suddenly shifted to conversations three and 
four - -  a colleague and I find this 'punctuated equilibrium' behavior fascinating and 
hope to investigate its dynamics in a future paper.) 

Figure 10: Total bandwidth used by old and new TCPs 

with  a d a n g e r  of  in teger  overf low.  Also,  m o s t  appl ica-  
t ions will  w a n t  var ia t ion  in the same  uni ts  as A and  M ,  
so we ' l l  be  forced  to take the square  root  of  the var iance  
to use  it (i.e., at least a divide,  mu l t i p ly  and  two  adds).  

A var ia t ion  m e a s u r e  tha t ' s  easy  to c o m p u t e  is the 
m e a n  p red ic t ion  e r ror  or  m e a n  devia t ion,  the ave rage  
of IM - A I . Also,  since 

m d e v  2 ( ~ _ ~ I M  A 0  2 = - _> ~ I M - A I  2 = ~ 2  

mean deviation is a more conservative (i.e., larger) es- 
timate of variation than standard deviation. 15 

There's often a simple relation between mdev and 
sdev. E.g., if the prediction errors are normally dis- 
tributed, m d e v  = X / ' - ~ s d e v .  For m o s t  c o m m o n  distri-  
bu t ions  the factor  to go  f r o m  sdev  to m d e v  is nea r  one  

15Mathematical purists  may  note that I elided a factor of n ,  the 
number  of samples,  from the previous inequality. It makes no differ- 
ence in the result. 

( X / - ~  ~ 1.25). I.e., m d e v  is a g o o d  a p p r o x i m a t i o n  of 
sdev  and  is m u c h  easier to compu te .  

A.2 Practice 

Fast es t imators  for  ave rage  A and  m e a n  dev ia t ion  D 
g iven  m e a s u r e m e n t  M fo l low direct ly  f r o m  the above.  
Both  es t imators  c o m p u t e  m e a n s  so there  are two  in- 
s tances of  the RFC793 a lgor i thm:  

E r r  = M - A 

A ~-- A + g E r r  

D ~ D + g(lErrl - D )  

To c o m p u t e  quickly, the above  s h o u l d  be  d o n e  in in- 
teger  ari thmetic.  But the express ions  conta in  fract ions 
(g < 1) so some  scal ing is n e e d e d  to keep  e v e r y t h i n g  
integer. A r e c i p r o c a l p o w e r  of  2 (i.e., g = 1 /2  n for  s o m e  
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Figure 10 showed the old TCPs were using 25% more than the bottleneck link bandwidth .  
Thus, once the bottleneck queue filled, 25% of the the senders '  packets were being 
discarded.  If the discards, and only the discards, were retransmitted, the senders would  
have received the full 25 KBps link bandwid th  (i.e., their behavior  would  have been anti- 
social but  not self-destructive). But fig. 8 noted that around 25% of the link bandwid th  
was unaccounted for. 
Here we average the total amount  of data acked per five second interval. (This gives 
the effective or delivered bandwid th  of the link.) The thin line is once again the old TCPs. 
Note that only 75% of the link bandwid th  is being used for data (the remainder  must  
have been used by  retransmissions of packets that d idn ' t  need to be retransmitted).  
The thick line shows delivered bandwid th  for the new TCPs. There is the same slow-start  
and turn-on transient followed by  a long per iod of operat ion right at the link bandwidth .  

Figure 11: Effective bandwidth of old and new TCPs 

n)  is a p a r t i c u l a r l y  g o o d  cho ice  for  g s ince  the  sca l ing  
can  b e  i m p l e m e n t e d  w i t h  shif ts .  M u l t i p l y i n g  t h r o u g h  
b y  1/g g ives  

2hA *- 2hA + Err 

2riD <-- 2riD + (IErrl - D) 

To m i n i m i z e  r o u n d - o f f  er ror ,  the  sca l ed  v e r s i o n s  of  
A and D, SA and SD, s h o u l d  b e  k e p t  r a t h e r  t han  the  
u n s c a l e d  ve r s ions .  P i c k i n g  g = .125 = ~ (close to the  .1 
s u g g e s t e d  in  RFC793)  a n d  e x p r e s s i n g  the  a b o v e  in  C: 

M -= (SA >> 3); /* = 

SA += M; 

if (M < 0) 

M = -M; /* = 

M -= (SD >> 3); 

SD += M; 

Err */ 

abs (Err) * /  

I t ' s  n o t  n e c e s s a r y  to u se  the  s a m e  g a i n  for  A a n d  
D .  To force  the  t i m e r  to go  u p  q u i c k l y  in  r e s p o n s e  

to c h a n g e s  in  the  RTT, i t ' s  a g o o d  i d e a  to g ive  D a 
l a rge r  gain .  In  pa r t i cu l a r ,  b e c a u s e  of  w i n d o w - d e l a y  
m i s m a t c h ,  t he re  a re  o f t en  RTT ar t i fac t s  a t  i n t e g e r  m u l -  
t ip les  of the  w i n d o w  size.  16 To f i l ter  these ,  one  w o u l d  
l ike  1/g in the A e s t i m a t o r  to b e  at  l eas t  as  l a rge  as  the  
w i n d o w  size  (in packe t s )  a n d  1/g in the D e s t i m a t o r  to  
b e  less  t han  the  w i n d o w  size.  17 

U s i n g  a ga in  of .25 on  the  d e v i a t i o n  a n d  c o m p u t i n g  
the  r e t r a n s m i t  t imer ,  rto, as A + 2D,  the  f ina l  t i m e r  c o d e  

16E.g., see packets 10-50 of figure 5. Note that these window ef- 
fects are due to characteristics of the Arpa/Milnet subnet. In general, 
window effects on the timer are at most a second-order consideration 
and depend a great deal on the underlying network. E.g., if one were 
using the Wideband with a 256 packet window, 1/256 would not be 
a good gain for A (1/16 might be). 

17 Although it may not be obvious, the absolute value in the calcu- 
lation of D introduces an asymmetry in the timer: Because D has 
the same sign as an increase and the opposite sign of a decrease, more 
gain in D makes the timer go up quickly and come down slowly, 'au- 
tomatically' giving the behavior suggested in [Mi183]. E.g., see the 
region between packets 50 and 80 in figure 6. 
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Because of the five second averaging time (needed to smooth out the spikes in the old 
T C P  data), the congestion avoidance window policy is difficult to make out in figures 
10 and 11. Here we show effective throughput (data acked) for T C P s  with congestion 
control, averaged over a three second interval. 
When a packet is dropped, the sender sends until it fills the window, then stops until 
the retransmission timeout. Since the receiver cannot ack data beyond the dropped 
packet, on this plot we'd expect to see a negative-going spike whose amplitude equals 
the sender's window size (minus one packet). If the retransmit happens in the next 
interval (the intervals were chosen to match the retransmit timeout), we'd expect to see 
a positive-going spike of the same amplitude when receiver acks its cached data. Thus 
the height of these spikes is a direct measure of the sender's window size. 
The data clearly shows three of these events (at 15, 33 and 57 seconds) and the window 
size appears to be decreasing exponentially. The dotted line is a least squares fit to the 
six window size measurements obtained from these events. The fit time constant was 28 
seconds. (The long time constant is due to lack of a congestion avoidance algorithm in 
the gateway. With a 'drop' algorithm running in the gateway, the time constant should 
be around 4 seconds) 

Figure 12: Window adjustment detail 

looks like: 

M -= (SA > >  3); 

SA += M; 

if (M < 0) 

M = -M; 

M -= (SD >> 2); 

SD += M; 

rto = ((SA >> 2) + SD) >> i; 

Note that S A  and  S D  are addedbefore  the final shift. In 
general, this will correctly round  rto: Because of the S A  
truncation when  comput ing  M - A ,  S A  will converge 
to the true mean  rounded  up to the next tick. Likewise 
w i t h  S D .  Thus, on the average, there is half a tick of 
bias in each. The r t o  computat ion should be rounded  

by half a tick and one tick needs to be added  to account 
for sends being phased randomly  with respect to the 
clock. So, the 1.5 tick bias contribution from A + 2D 
equals the desired half tick rounding  plus one tick phase 
correction. 

B The combined slow-start with 
congestion avoidance algorithm 

The sender keeps two state variables for congestion con- 
trol: a congestion window, cwnd, and a threshold size, 
ssthresh, to switch between the two algorithms. The 
sender ' s  output  routine always sends the m i n i m u m  of 
cwnd and the w indow advertised by  the receiver. On 
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a timeout, half the current window size is recorded in 
ssthresh (this is the multiplicative decrease part of the 
congestion avoidance algorithm), then cwnd is set to 
1 packet (this initiates slow-start). When new data is 
acked, the sender does 

if (cwnd < ssthresh) 

/* if we're still doing slow-start 

* open window exponentially */ 

cwnd += 1 

else 

/* otherwise do Congestion 

* Avoidance increment-by-i */ 

cwnd += i/cwnd 

Thus slow-start opens the window quickly to what 
congestion avoidance thinks is a safe operating point 
(half the window that got us into trouble), then con- 
gestion avoidance takes over and slowly increases the 
window size to probe for more bandwidth becoming 
available on the path. 

C Window Adjustment Policy 

A reason for using ½ as a the decrease term, as op- 
posed to the 7 in [JRC87], was the following handwav- 
ing: When a packet is dropped, you're either starting 
(or restarting after a drop) or steady-state sending. If 
you're starting, you know that half the current window 
size 'worked', i.e., that a window's worth of packets 
were exchanged with no drops (slow-start guarantees 
this). Thus on congestion you set the window to the 
largest size that you know works then slowly increase 
the size. If the connection is steady-state running and 
a packet is dropped, it's probably because a new con- 
nection started up and took some of your bandwidth. 
We usually run our nets with p < 0.5 so it's probable 
that there are now exactly two conversations sharing 
the bandwidth. I.e., you should reduce your window 
by half because the bandwidth available to you has been 
reduced by half. And, if there are more than two con- 
versations sharing the bandwidth, halving your win- 
dow is conservative - -  and being conservative at high 
traffic intensities is probably wise. 

Although a factor of two change in window size 
seems a large performance penalty, in system terms the 
cost is negligible: Currently, packets are dropped only 
when a large queue has formed. Even with an [ISO86] 
'congestion experienced' bit to force senders to reduce 
their windows, we're stuck with the queue because the 
bottleneck is running at 100% utilization with no excess 
bandwidth available to dissipate the queue. If a packet 
is tossed, some sender shuts up for two RTT, exactly the 

time needed to empty the queue. If that sender restarts 
with the correct window size, the queue won't  reform. 
Thus the delay has been reduced to minimum without 
the system losing any bottleneck bandwidth. 

The 1-packet increase has less justification than the 
0.5 decrease. In fact, it's almost certainly too large. If the 
algorithm converges to a window size of w, there are 
O(w 2) packets between drops with an additive increase 
policy. We were shooting for an average drop rate of 
< 1% and found that on the Arpanet (the worst case of 
the four networks we tested), windows converged to 
8-12 packets. This yields I packet increments for a 1% 
average drop rate. 

But, since we've done nothing in the gateways, the 
window we converge to is the maximum the gateway 
can accept without dropping packets. I.e., in the terms 
of [JRC87], we are just to the left of the cliff rather than 
just to the right of the knee. If the gateways are fixed 
so they start dropping packets when the queue gets 
pushed past the knee, our increment will be much too 
aggressive and should be dropped by about a factor of 
four (since our measurements on an unloaded Arpanet 
place its 'pipe size' at 4-5 packets). It appears trivial to 
implement a second order control loop to adaptively de- 
termine the appropriate increment to use for a path. But 
second order problems are on hold until we've spent 
some time on the first order part of the algorithm for 
the gateways. 
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