Routing in the Internet

CS168, Fall 2014 Sylvia Ratnasamy

http://inst.eecs.berkeley.edu/~cs168/fa14/

Link-State and Distance-Vector

- Attend section!
 - Review Dijkstra's

Routing in the Internet

So far, only considered routing within a domain

- Many issues can be ignored in this setting because there is central administrative control over routers
 - Issues such as autonomy, privacy, policy

"Autonomous System (AS)" or "Domain" Region of a network under a single administrative entity "Border Routers" An "end-to-end" route "Interior Routers"

Autonomous Systems (AS)

- AS is a network under a single administrative control
 - currently over 30,000 ASes
 - Think AT&T, France Telecom, UCB, IBM, etc.
- ASes are sometimes called "domains"

- Each AS is assigned a unique identifier
 - 16 bit AS Number (ASN)
 - E.g., ASN 25 is UCB

"Intradomain" routing: within an AS

Link-State (OSPF) and Distance-Vector (RIP, IGRP)

- Focus
 - "least cost" paths
 - convergence

"Interdomain" routing: between ASes

Two key challenges

- Scaling
- Administrative structure
 - Issues of autonomy, policy, privacy

"Interdomain" routing: between ASes

Two key challenges

- Scaling
- Administrative structure
 - Issues of autonomy, policy, privacy

Recall From Lecture#4

- Assume each host has a unique ID
- No particular structure to those IDs

Recall Also...

Scaling

- A router must be able to reach any destination
 - Given packet's destination address, lookup "next hop"
- Naive: Have an entry for each destination
 - There would be over 10^8 entries!
 - And routing updates per destination!
- Any ideas on how to improve scalability?

A smaller table at node B?

Re-number the end-systems?

- careful address assignment → can aggregate multiple addresses into one range → scalability!
- akin to reducing the number of destinations

Scaling

- A router must be able to reach any destination
- Naive: Have an entry for each destination

- Better: Have an entry for a range of addresses
 - But can't do this if addresses are assigned randomly!
- How addresses are allocated will matter!!

Host addressing is key to scaling

Two Key Challenges

- Scaling
- Administrative structure
 - Issues of autonomy, policy, privacy

Administrative structure shapes Interdomain routing

- ASes want freedom to pick routes based on policy
 - "My traffic can't be carried over my competitor's network"
 - "I don't want to carry A's traffic through my network"
 - Not expressible as Internet-wide "least cost"!
- ASes want autonomy
 - Want to choose their own internal routing protocol
 - Want to choose their own policy
- ASes want privacy
 - choice of network topology, routing policies, etc.

Choice of Routing Algorithm

Link State (LS) vs. Distance Vector (DV)?

- LS offers no privacy broadcasts all network information
- LS limits autonomy -- need agreement on metric, algorithm
- DV is a decent starting point
 - Per-destination updates by intermediate nodes give us a hook
 - but wasn't designed to implement policy
 - and is vulnerable to loops if shortest paths not taken

The "Border Gateway Protocol" (BGP) extends distance-vector ideas to accommodate policy

Outline

Addressing

- BGP
 - context and basic ideas: today
 - details and issues: next lecture

Addressing Goal: Scalable Routing

- State: Small forwarding tables at routers
 - Much less than the number of hosts
- Churn: Limited rate of change in routing tables

Ability to aggregate addresses is crucial for both (one entry to *summarize* many addresses)

Aggregation only works if....

- Groups of destinations reached via the same path
- These groups are assigned contiguous addresses
- These groups are relatively stable
- Few enough groups to make forwarding easy

Hence, IP Addressing: Hierarchical

- Hierarchical address structure
- Hierarchical address allocation
- Hierarchical addresses and routing scalability

IP Addresses (IPv4)

 Unique 32-bit number associated with a host 00001100 00100010 10011110 00000101

- Represented with the "dotted quad" notation
 - e.g., 12.34.158.5

Examples

What address is this?80.19.240.51

01010000 00010011	11110000	00110011
-------------------	----------	----------

How would you represent 68.115.183.7?

01000100	01110011	10110111	00000111
----------	----------	----------	----------

Hierarchy in IP Addressing

- 32 bits are partitioned into a prefix and suffix components
- Prefix is the network component; suffix is host component

Interdomain routing operates on the network prefix

History of Internet Addressing

- Always dotted-quad notation
- Always network/host address split
- But nature of that split has changed over time

Original Internet Addresses

- First eight bits: network component
- Last 24 bits: host component

Assumed 256 networks were more than enough!

Next Design: "Classful" Addressing

Three main classes

Problem: Networks only come in three sizes!

Today's Addressing: CIDR

- CIDR = Classless Interdomain Routing
- Idea: Flexible division between network and host addresses
- Motivation: offer a better tradeoff between size of the routing table and efficient use of the IP address space

CIDR (example)

- Suppose a network has fifty computers
 - allocate 6 bits for host addresses (since 2⁵ < 50 < 2⁶)
 - remaining 32 6 = 26 bits as network prefix
- Flexible boundary means the boundary must be explicitly specified with the network address!
 - informally, "slash 26" → 128.23.9/26
 - formally, prefix represented with a 32-bit mask: 255.255.255.192
 where all network prefix bits set to "1" and host suffix bits to "0"

Classful vs. Classless addresses

- Example: an organization needs 500 addresses.
 - A single class C address not enough (254 hosts).
 - Instead a class B address is allocated. (~65K hosts)
 - That's overkill, a huge waste!
- CIDR allows an arbitrary prefix-suffix boundary
 - Hence, organization allocated a single /23 address (equivalent of 2 class C's)
- Maximum waste: 50%

Hence, IP Addressing: Hierarchical

- Hierarchical address structure
- Hierarchical address allocation
- Hierarchical addresses and routing scalability

Allocation Done Hierarchically

- Internet Corporation for Assigned Names and Numbers (ICANN) gives large blocks to...
- Regional Internet Registries, such as the American Registry for Internet Names (ARIN), which give blocks to...
- Large institutions (ISPs), which give addresses to...
- Individuals and smaller institutions
- FAKE Example:

CIDR: Addresses allocated in contiguous prefix chunks

Recursively break down chunks as get closer to host

FAKE Example in More Detail

- ICANN gives ARIN several /8s
- ARIN gives AT&T one /8, 12.0/8
 - Network Prefix: 00001100
- AT&T gives UCB a /16, 12.197/16
 - Network Prefix: 0000110011000101
- UCB gives EECS a /24, 12.197.45/24
 - Network Prefix: 000011001100010100101101
- EECS gives me a specific address 12.197.45.23
 - Address: 00001100110001010010110100010111

Hence, IP Addressing: Hierarchical

- Hierarchical address structure
- Hierarchical address allocation
- Hierarchical addresses and routing scalability

IP addressing → scalable routing?

Hierarchical address allocation only helps routing scalability if allocation matches topological hierarchy

Can add new hosts/networks without updating the routing entries at France Telecom

ESNet must maintain routing entries for both a.*.*.* and a.c.*.*

 Hierarchical address allocation helps routing scalability if allocation matches topological hierarchy

 Problem: may not be able to aggregate addresses for "multi-homed" networks

- Two competing forces in scalable routing
 - aggregation reduces number of routing entries
 - multi-homing increases number of entries

Growth in Routed Prefixes (1989-2005)

Same Table, Extended to Present

Summary of Addressing

- Hierarchical addressing
 - Critical for scalable system
 - Don't require everyone to know everyone else
 - Reduces amount of updating when something changes
- Non-uniform hierarchy
 - Useful for heterogeneous networks of different sizes
 - Class-based addressing was far too coarse
 - Classless InterDomain Routing (CIDR) more flexible
- A later lecture: impact of CIDR on router designs

Outline

- Addressing
- Border Gateway Protocol (BGP)
 - today: context and key ideas
 - next lecture: details and issues

BGP (Today)

- The role of policy
 - what we mean by it
 - why we need it
- Overall approach
 - four non-trivial changes to DV
 - how policy is implemented (detail-free version)

Administrative structure shapes Interdomain routing

- ASes want freedom to pick routes based on policy
- ASes want autonomy
- ASes want privacy

Topology and policy is shaped by the business relationships between ASes

- Three basic kinds of relationships between ASes
 - AS A can be AS B's customer
 - AS A can be AS B's provider
 - AS A can be AS B's peer
- Business implications
 - Customer pays provider
 - Peers don't pay each other
 - Exchange roughly equal traffic

Business Relationships

Relations between ASes

provider ← ← ← customer peer ← ← peer

Business Implications

- Customers pay provider
- Peers don't pay each other

Why peer?

Relations between ASes

provider ← → customer

peer ← → peer

Business Implications

- Customers pay provider
- Peers don't pay each other

Routing Follows the Money!

- ASes provide "transit" between their customers
- Peers do not provide transit between other peers

Routing Follows the Money!

 An AS only carries traffic to/from its own customers over a peering link

Routing Follows the Money!

Routes are "valley free" (will return to this later)

In Short

- AS topology reflects business relationships between Ases
- Business relationships between ASes impact which routes are acceptable
- BGP Policy: Protocol design that allows ASes to control which routes are used
- Next lecture: more formal analysis of the impact of policy on reachability and route stability

BGP (Today)

- The role of policy
 - what we mean by it
 - why we need it
- Overall approach
 - four non-trivial changes to DV
 - how policy is implemented (detail-free version)

Interdomain Routing: Setup

- Destinations are IP prefixes (12.0.0.0/8)
- Nodes are Autonomous Systems (ASes)
 - Internals of each AS are hidden
- Links represent both physical links and business relationships
- BGP (Border Gateway Protocol) is the Interdomain routing protocol
 - Implemented by AS border routers

BGP: Basic Idea

You've heard this story before!

BGP inspired by Distance Vector

Per-destination route advertisements

No global sharing of network topology information

Iterative and distributed convergence on paths

With four crucial differences!

Differences between BGP and DV (1) not picking shortest path routes

 BGP selects the best route based on policy, not shortest distance (least cost)

Node 2 may prefer "2, 3, 1" over "2, 1"

How do we avoid loops?

Differences between BGP and DV (2) path-vector routing

- Key idea: advertise the entire path
 - Distance vector: send distance metric per dest d
 - Path vector: send the entire path for each dest d

Differences between BGP and DV (2) path-vector routing

- Key idea: advertise the entire path
 - Distance vector: send distance metric per destination
 - Path vector: send the entire path for each destination
- Benefits
 - loop avoidance is easy

Loop Detection w/ Path-Vector

- Node can easily detect a loop
 - Look for its own node identifier in the path
- Node can simply discard paths with loops
 - E.g., node 1 sees itself in the path "3, 2, 1"
 - E.g., node 1 simply discards the advertisement

Differences between BGP and DV (2) path-vector routing

- Key idea: advertise the entire path
 - Distance vector: send distance metric per destination
 - Path vector: send the entire path for each destination

Benefits

- loop avoidance is easy
- flexible policies based on entire path

Differences between BGP and DV (3) Selective route advertisement

- For policy reasons, an AS may choose not to advertise a route to a destination
- Hence, reachability is not guaranteed even if graph is connected

Example: AS#2 does not want to carry traffic between AS#1 and AS#3

Differences between BGP and DV (4) BGP may *aggregate* routes

 For scalability, BGP may aggregate routes for different prefixes

BGP (Today)

- The role of policy
 - what we mean by it
 - why we need it
- Overall approach
 - four non-trivial changes to DV
 - how policy is implemented (detail-free version)

Policy imposed in how routes are selected and exported

- Selection: Which path to use?
 - controls whether/how traffic leaves the network
- Export: Which path to advertise?
 - controls whether/how traffic enters the network

Typical Selection Policy

- In decreasing order of priority
 - make/save money (send to customer > peer > provider)
 - maximize performance (smallest AS path length)
 - minimize use of my network bandwidth ("hot potato")
 - ...
 - ...

 BGP uses something called route "attributes" to implement the above (next lecture)

Typical Export: Peer-Peer Case

- Peers exchange traffic between their customers
 - AS exports only customer routes to a peer
 - AS exports a peer's routes only to its customers

Typical Export: Customer-Provider

- Customer pays provider for access to Internet
 - Provider exports its customer routes to everybody
 - Customer exports provider routes only to its customers

Traffic to customer

Traffic from customer

Next Time

- Wrap up BGP
 - protocol details
 - pitfalls