
U.C. Berkeley — CS170: Algorithms Handout LN-11-22
Christos Papadimitriou & Luca Trevisan November 22, 2016

Streaming algorithms

In this lecture and the next one we study memory-efficient algorithms that process a
stream (i.e. a sequence) of data items and are able, in real time, to compute useful
features of the data.

Streaming algorithms are useful in any problem domain, including graph algorithms,
but we will restrict to the following important family of problems: we get a sequence
of data items (for example sales records, or web hits), and each data item has a data
field of interest, which we will call a “label” (for example, the product id of the item
that was sold, the IP address that we get a hit from) and we want to compute various
statistics about the sequence of labels.

Abstracting away all the data except the labels, we can think of our input as being a
stream

x1, x2, . . . xn

where each xi ∈ Σ is a label, and Σ is the set of all possible labels (e.g. all product
identifiers, or all IP addresses). For a given stream x1, . . . , xn, and for a label a ∈ Σ,
we will call fa the frequency of a in the stream, that is, the number of times a appears
in the stream. We will be interested in the following three problems:

• Finding heavy hitters, that is, labels for which fa is large (e.g. find best-selling
products, or IP addresses that visit our site most often)

• Finding the number of distinct labels in the stream (e.g. finding how many
different products we have sold, or how many unique visitors we have)

• Finding the sum-of-squares quantity
∑

a∈Σ f
2
a , which is usually denoted as F2,

and also called the second frequency moment of the stream

It should be self-evident that the first two problems are important.

To understand the quantity F2, consider two extreme cases that we can have in a
stream of n items. If all the n labels in the stream are different, then we have∑

a∈Σ f
2
a = n, because we have n frequencies that are 1 and all the others are zero.

If all the n labels are identical, then
∑

a∈Σ f
2
a = n2. In all other cases, the value

1

of F2 for a stream of n items will always be between n and n2, and smaller values
correspond to streams with several distinct labels each occurring not too often, and
large values correspond to streams with few distinct labels occurring often. So F2 is
a one-parameter measure of how ”diversified” is the stream.

All three problems have simple solutions in which we store the entire stream. We
can store a list of all the distinct labels we have seen, and for each of them also store
the number of occurrences. That is, the data structure would contain a pair (a, fa)
for every label a that appears at least once in the stream. Such a data structure can
be maintained using O(k · (log n+ log |Σ|)) ≤ O(n · (log n+ log |Σ|)) bits of memory.
Alternatively, one could have an array of size |Σ| storing fa for every label a, using
O(|Σ| · log n) bits of memory. If the labels are IPv6 addresses, then Σ = 2128, so the
second solution is definitely not feasible; in a setup in which a stream might contain
hundreds of millions of items or more, even a data structure of the first type is rather
large.

We will give a solution to the heavy hitter problem that uses O((log n)2) bits of
memory (in realistic implementations, the data structure requires only an array of
size about 300-600, containing 32-bit integers) and solutions to the other problems
that use O(log n) bits of memory (in realistic settings, the data structures are an
array of size ranging from a few dozens to a few thousands 32-bit integers).

Those solutions will be randomized and will only provide approximate solutions. Both
features are necessary: it is possible to prove that randomized exact algorithms and
deterministic approximate algorithms must use an amount of memory of the same
order as the trivial solution of storing all the values f(a). We will not prove these
impossibility results, but next week we will prove that any deterministic and ex-
act algorithm for each of the above three problems must use Ω(min{|Σ|, n}) bits of
memory.

Today we see algorithms for the heavy hitters and distinct elements problems. Next
week we will see the sum-of-squares algorithm.

1 Probability Review

Since we are going to do a probabilistic analysis of randomized algorithms, let us
review the handful of notions from discrete probability that we are going to use.

Suppose that A and B are two events, that is, things that may or may not happen.
Then we have the union bound

Pr[A ∨B] ≤ Pr[A] + Pr[B]

If A and B are independent then we also have

Pr[A ∧B] = Pr[A] · Pr[B]

2

Informally, a random variable is an outcome of a probabilistic experiment, which has
various possible values with various probabilities. (Formally, it is a function from the
sample space to the reals, though the formal definition does not help intuition very
much.)

The expectation of a random variable X is

EX =
∑
v

Pr[X = v] · v

where v ranges over all possible values that the random variable can take.

We are going to make use of the following three useful facts about random variables:

• Linearity of expectation: if X and Y are two random variables, then E[X+Y] =

EX + E y, and if v is a number, then E[vX] = v · EX.

• Product formula for independent random variables: IfX and Y are independent,
then EXY = (EX) · (EY)

• Markov’s inequality: If X is a random variable that is always ≥ 0, then, for
every t > 0, we have

Pr[X ≥ t] ≤ EX
t

Linearity of expectation and the product rule greatly simplify the computation
of the expectation of random variables that come up in applications (which are
often sums or products of simpler random variables). Markov’s inequality is
useful because once we compute the expectation of a random variable we are
able to make high-probability statements about it. For example, if we know
that X is a non-negative random variable of expectation 100, we can say that
there is a ≥ 90% probability that X ≤ 1, 000.

Finally, the variance of a random variable X is

VarX := E(X − EX)2

and the standard deviation of a random variable X is
√
VarX. The significance

of this definition is that, if the variance is small, we can prove that X has, with
high probability, values close to the expectation. That is, for every t > 0,

Pr[|X − EX| ≥ t] = Pr[(X − EX)2 ≥ t2] ≤ VarX

t2

and, after the change of variable t = c
√
VarX,

Pr[|X − EX| ≥ c
√
VarX] ≤ 1

c2

3

so, for example, there is at least a 99% probability that X is within 10 stan-
dard deviations of its expectation. The above inequality is called Chebyshev’s
inequality. (There are a dozen alternative spellings for Chebyshev’s name; you
may have encountered this inequality before, spelled differently.)

If one knows more about X, then it is possible to say a lot more about the prob-
ability that X deviates from the expectation. In several interesting cases, for
example, the probability of deviating by c standard deviations is exponentially,
rather than polynomially, small in c2. The advantage of Chebyshev’s inequality
is that one does not need to know anything about X other than its expectation
and its variance.

Two final things about variance: if X1, . . . , Xn are pairwise independent random
variables, then

Var[X1 + . . .+Xn] = VarX1 + . . .+ VarXn

and if X is a random variable whose only possible values are 0 and 1, then

EX = Pr[X = 1]

and
VarX = EX2 − (EX)2 ≤ EX2 = EX = Pr[X = 1]

2 The Heavy Hitters Problem

From Problem 5 in HW1, you may remember the problem of finding a label such that
fa >

n
2

in a stream of length n. The solution is an algorithm that is deterministic
and uses only two variables (and log Σ + log n bits of memory), but its analysis relies
on the fact that we are interested in finding a label occurring a majority of the times.
Suppose, instead, that we are interested in finding all labels, if any, that occur at
least .3n times. Next week, we will show that this requires Ω(min{|Σ|, n}) bits of
memory. The data structure that we present in this section, however, is able to do
the following using O((log n)2) memory: come up with a list that includes all labels
that occur at least .3n times and which includes, with high probability, none of the
labels that occur less than .2n times. Of course .2 and .3 could be replaced by any
other two constants.

Even more impressively, every time the algorithm sees an item in the stream, it is
able to approximate the number of times it has seen that element so far, up to an
additive error of .1n, and, again, .1 could be replaced by any other positive constant.

The algorithm is called Count-Min, or Count-Min-Sketch, and it has been imple-
mented in a number of libraries.

4

The algorithm relies on two parameters ` and B. We choose ` = 2 log n and B = 20.
In general, if we want to be able to approximate frequencies up to an additive error
of εn, we will choose B = 2/ε.

The following version of the algorithm reports an approximation of the number of
times it has seen the label so far for each label of the stream that it processes:

• Initialize an `×B array M to all zeroes

• Pick ` random functions h1, . . . , h`, where hi : Σ→ {1, . . . , B}

• while not end-of-stream:

– read a label x from the stream

– for i = 1 to `:

∗ M [i, hi(x)] + +

– print “estimated number of times”, x, “occurred so far is”, mini=1,...,`M [i, hi(x)]

And the following version of the algorithm constructs a list that, includes all the labels
that occur ≥ .3n times in the stream and, with high probability, includes none of the
labels that occur < .3n− 2n

B
times in the stream. (If B = 20, then .3n− 2n

B
= .2n.)

• Initialize an `×B array M to all zeroes

• Initialize L to an empty list

• Pick ` random functions h1, . . . , h`, where hi : Σ→ {1, . . . , B}

• while not end-of-stream:

– read a label x from the stream

– for i = 1 to `:

∗ M [i, hi(x)] + +

– if mini=1,...,`M [i, hi(x)] > .3n add x to L, if not already present

• return L

Let us analyze the above algorithm. The first observation is that, when we see a label
a, we increase all the ` values

M [1, h1(a)],M [2, h2(a)], . . . ,M [`, h`(a)]

5

and so, at the end of the stream, having done the above fa times, it follows that all
the above values are at least fa, and so

fa ≤ min
i=1,...,`

M [i, hi(a)]

In particular, this means that if a is a label such that fa ≥ .3n then, by the last time
we see an occurrence of a, it must be that mini=1,...,`M [i, hi(a)] > .3n, and so, in the
second algorithm, we see that a is certainly added to the list.

The problem is that mini=1,...,`M [i, hi(a)] could be much bigger than fa, and so the
first algorithm could deliver a poor approximation and the second algorithm could
add some “light hitters” to the list. We need to prove that this failure mode has a
low probability of happening.

First of all, we see that, for a fixed choice of the functions hi,

M [i, hi(a)] = fa +
∑

b 6=a:hi(b)=hi(a)

fb

Now let’s compute the expectation of M [i, hi(a)] over the random choice of the func-
tion hi. We see that it is

EM [i, hi(a)] = fa +
∑
b6=a

Pr[hi(a) = hi(b)] · fb

= fa +
1

B

∑
b 6=a

fb

≤ fa +
n

B

where we use the fact that, for a random function hi : Σ→ {1, . . . , B}, the probability
that hi(a) = hi(b) is exactly 1

B
, and the fact that

∑
b6=a fb = n− fa ≤ n.

So far, we have proved that the content of M [i, hi(a)] is always at least fa and, in ex-
pectation, is at most fa+ n

B
. Let us know translate this statement about expectations

to a statement about probabilities.

Applying Markov’s inequality to the (non-negative!) random variable M [i, hi(a)]−fa,
we have

Pr

[
M [i, hi(a)] > fa +

2n

B

]
≤ 1

2

and, using the independence of the hi,

6

Pr

[
min
i=1...,`

M [i, hi(a)] > fa +
2n

B

]
= Pr

[(
M [1, h1(a) > fa +

2n

B

)
∧ . . . ∧

(
M [`, h`(a) > fa +

2n

B

)]
= Pr

[
M [1, h1(a) > fa +

2n

B

]
· . . . · Pr

[
M [`, h`(a) > fa +

2n

B

]
≤ 1

2`

So, if we choose B = 20 and ` = 2 log n, we have that the estimate miniM [i, hi(a)] is
between fa and fa + .1n, except with probability at most 1

n2 . In particular, there is
a probability at least 1− 1/n, that we get a good estimate n times in a row.

3 Counting Distinct Elements

Here the algorithm is a lot simpler. We pick a random function h : Σ→ [0, 1] (we will
see later how to appropriately discretize this choice so that the function can be stored
in memory), and, for every item x in the stream, we evaluate h(x), keeping track of
the smallest hash value obtained so far. If min is the minimum hash value seen at
the end of the stream, then 1

min
is our estimate of the number of distinct elements in

the stream.

The intuition for the algorithm is the following: suppose that the stream has k distinct
labels. Then when we evaluate h at every element of the stream, we are evaluating h
at k distinct inputs, although some inputs are maybe repeated several times. If h is a
random function, we are getting k random values in the interval [0, 1]. Intuitively, we
would expect k random numbers selected in the interval [0, 1] to be evenly distributed,
and so the minimum of these numbers should be about 1/k. Thus, the inverse of the
minimum should be around k.

Here is a simple calculation showing that there is at least 60% probability that the
algorithm achieves a constant-factor approximation. Suppose that the stream has k
distinct labels, and call r1, . . . , rk the k random numbers in [0, 1] corresponding to
the evaluation of h at the distinct labels of the stream. Then

7

Pr

[
Algorithm′s output ≤ k

2

]
= Pr

[
min{r1, . . . , rk} ≥

2

k

]
= Pr

[
r1 ≥

2

k
∧ . . . ∧ rk ≥

2

k

]
= Pr

[
r1 ≥

2

k

]
· . . . · Pr

[
rk ≥

2

k

]
=

(
1− 2

k

)k

≤ e−2 ≤ .14

and

Pr [Algorithm′s output ≥ 4k] = Pr

[
min{r1, . . . , rk} ≤

1

4k

]
= Pr

[
r1 ≤

1

4k
∨ . . . ∨ rk ≤

1

4k

]
≤

k∑
i=1

Pr

[
ri ≤

1

4k

]
=

1

4

so that

Pr

[
k

2
≤ Algorithm′s output ≤ 4k

]
≥ .61

There are various ways to improve the quality of the approximation and to increase
the probability of success.

One of the simplest ways is to keep track not of the smallest hash value encountered
so far, but the t distinct labels with the smallest hash values. This is a set of labels
and values that can be kept in a data structure of size O(t log |Σ|), and processing an
element from the stream takes time O(log t) if the labels are put in a priority queue.
Then, if tsh is the t-th smallest hash value in the stream, our estimate for the number
of distinct values is t

tsh
.

The intuition is that, as before, if we have k distinct labels, their hashed values will be
k random points in the interval [0, 1], which we would expect to be uniformly spaced,
so that the t-th smallest would have a value of about t

k
. Thus its inverse, multiplied

by t, should be an estimate of k.

8

Why would it help to work with the t-th smallest hash instead of the smallest? The
intuition is that it takes only one outlier to skew the minimum, but one needs to have
t outliers to skew the t-th smallest, and the latter is a more unlikely event.

3.1 * Rigorous Analysis of the “t-th Smallest” Algorithm

Let us sketch a more rigorous analysis. These calculations are a bit more complicated
than the rest of the content of this lecture, so it is ok to skip them.

We will see that we can get an estimate that is, with high probability, between k− εk
and k+ εk, by choosing t to be of the order of 1/ε2. For example, choosing t = 30/ε2

there is at least a 93% probability of getting an ε-approximation.

For concreteness, we will see that, with t = 3, 000, we get, with probability at least
93%, an error that is at most 10%. As before, we let r1, . . . , rk be the hashes of the
k distinct labels in the stream. We let tsh be the t-th smallest of r1, . . . , rk.

Pr[Algorithm′s output ≥ 1.1k] = Pr

[
tsh ≤ t

1.1k

]
= Pr

[(
#i : ri ≤

t

1.1k

)
≥ t

]
Now let’s study the number of is such that ri ≤ t/(1.1k), and let’s give it a name

N := #i : ri ≤
t

1.1k

This is a random variable whose expectation is easy to compute. If we define Si to
be 1 if ri ≤ t/(1.1k) and 0 otherwise, then N =

∑
i Si and so

EN =
∑
i

ESi =
∑
i

Pr

[
ri ≤

t

1.1k

]
= k · t

1.1k
=

t

1.1

The variance of N is also easy to compute.

VarN =
∑
i

VarSi ≤ k · t

1.1k
≤ t

So N has an average of about .91t and a standard deviation of less than
√
t, so by

Chebyshev’s inequality

9

Pr[Algorithm′s output ≥ 1.1k] = Pr[N ≥ t]

= Pr[(N − EN) ≥ t− t/1.1]

≤ VarN

(t/11)2

=
121

t

=
121

3000
≤ 4.1%

Similarly,

Pr[Algorithm′s output ≤ .9k] = Pr

[
tsh ≥ t

.9k

]
= Pr

[(
#i : ri ≤

t

.9k

)
≤ t

]
and if we call

N := #i : ri ≤
t

.9k

We see that

EN =
t

.9

VarN ≤ t

and

Pr[Algorithm′s output ≤ .9k] = Pr[N ≤ t]

= Pr

[
EN −N ≥

t

.9
− t
]

≤ VarN

(t/9)2

=
81

t

=
81

3000
= 2.7%

10

So all together we have

Pr[.9k ≤ Algorithm′s output ≤ 1.1k] ≥ 93%

11

	Probability Review
	The Heavy Hitters Problem
	Counting Distinct Elements
	* Rigorous Analysis of the ``t-th Smallest'' Algorithm

