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Some notes on gradient descent

Gradient descent is a method to minimize convex functions. In its basic form, it finds
an approximate solution to the unconstrained problem

min f(x)
s.t.
x € R"

where f : R" — R is a convex function.

There are a number of variations of gradient descent, such as accelerated gradient
descent, conjugate gradient descent, stochastic gradient descent, and coordinate de-
scent. There are also methods to apply gradient descent algorithms to constrained
optimization problems.

Additionally, gradient descent methods often work well on non-convex optimization
problems, for reasons that are typically not well understood.

Two algorithms underlie the success of deep learning: careful implementations of
stochastic gradient descent on parallel architectures, and the backpropagation algo-
rithm to compute gradients. Training deep neural networks is a non-convex problem,
and it is one of the cases in which the good performance of gradient descent methods
is poorly understood.

In this notes, we will restrict ourselves to the rigorous analysis of the basic gradient
descent algorithm for the problem of unconstrained minimization of strongly convex
functions. Before proceeding, we will review the definitions of gradient and convexity,
and see how to bound the error in a truncated Taylor series.

1 Calculus Review

1.1 Univariate functions

Let us start with the case of univariate functions f : R — R. A function is convex
if, for every two points z and z, the line segment between (z, f(z)) and (z, f(2)) is



above the graph of the function f, that is, if for every ¢ € [0, 1] we have
flex + (1 —c)z) < cf(x) + (1 —)f(2)

The derivative of f at x is

provided that the limit exists. If f’(x) is well defined for all z, and continuous,
then f is called continuously differentiable. If f’ is differentiable then its derivative
is denoted f”, and, if f” is continuous, f is called twice—continuously-differentiable.
(We will omit the “continuously” from now on.)

The connection between convexity and derivatives is that if f is differentiable, then
f is convex if and only if

f(2) =2 (@) + (z =) f'(2)
for all z and z. The function z — f(x) + (2 — x) - f'(z) is the tangent of f at x, so

the above is saying that a differentiable function is convex if and only if its graph is
always above any of its tangents.

If f is twice-differentiable, then it is convex if and only if
f'(x) 20

for all z.

A function f is strictly convex if for every x,y € R and every ¢ € (0,1) we have
flex+ (1 —=c)z) <cf(x)+(1—0)f(2)

The above characterizations of convexity for differentiable and twice-differentiable
functions apply also to strong convexity, by replacing < with <.

The importance of the notion of strong convexity in the context of minimization is
that if f is strongly convex, then either it has no minimum (meaning inf, f(z) = —o0)
or it has exactly one minimum. If f is differentiable and strongly convex, then the
minimum, if it exists, is the unique point z* such that f’(z*) = 0.

To complete this review of univariate calculus, recall Taylor’s theorem: if a function
is infinitely differentiable, and if we call f*) the k-th derivative of f, then we have
that, for every x and z

1) = s+ 3 B o)

1
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If we consider only the first two terms of the Taylor’s series, that is the expression
f(x)+(z—x)- f'(x), then we have what is called the first order approximation of f(z).
This is just the line tangent to f at x. If f is differentiable, then we can rephrase the
condition of being strictly convex as the condition that f(z) is always bigger than its
first-order approximation, for every z # .

If f is twice differentiable, then the difference between f and its first-order approxi-
mation has a very nice expression:

F(2) = f(@) + (2= 2) - @)+ 3z = 2)*- () (1

For some point w between x and z.
In particular, if there are bounds ¢ and L such that, for every w,
(< f"(w) <L
then we can get upper and lower bounds to the integral in (1) as follows:

L

F@)+ (= a) F@) + g (= < () S J@) + (=) ) + o (2 )

1.2 * Eigenvalues of Symmetric Matrices

The content of this section is not necessary to understand what comes next (hence
the star in the title), but it motivates some of the definitions that will come later.

For two vectors x,y € R", their inner product is

n
<X7 y> = Z Z;Yq
=1

The inner product can also be written in matrix notation as

(x,y) =x"y

Il = [> a2 = V)

If M is an n x n real matrix, we say that a real number A is an eigenvalue of M if
there is a non-zero vector x € R" such that Mx = Ax. If M is symmetric, then (it is
a non-trivial theorem that) the smallest eigenvalue of M is

The norm of a vector is

- xPMx
min ————
x#0 ||x][?
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and the largest eigenvalue is
xT Mx
max ———
0 |[x|[?
We say that a symmetric matrix M is positive semidefinite if all the eigenvalues are
non-negative, and we say that is positive definite if all the eigenvalues are strictly
positive. By the above characterization of the smallest eigenvalue, it also follows that

a symmetric matrix M is positive semidefinite if and only if
vx e R™. xTMx >0
and that it is positive definite if and only if
vx € R" — {0}. x" Mx >0

If M is a positive definite matrix, we call the ratio between largest and smallest
eigenvalue the condition number of M.

1.3 Multivariate functions

Now we develop the multivariate analogs of all the concepts from Section 1.1. A
function f : R™ — R is convex if for every two points x,z € R", and every ¢ € [0, 1]
we have

flex+ (=) 2) S e [0+ (1-0) f(2)
and we say that f is strictly convex if the above inequality is strict for all ¢ € (0,1).

The partial derivative of f with respect to x; at x, written 88 / (x), is the derivative of

f if we think of it as a univariate function of the i-th Varlable and we think of the
other variables as constants.

For example, if f(z1,79) = 22 — 2129 + 223, then
of

([L’l, 1‘2) = —I + 41’2
0z,

=9 —
(1'1,172) 1 X2, a 7o

The directional derivative of f at x in the direction y, where x,y are n-dimensional
vectors, is defined as

U () = tim fxtey) = f(x)

dy =0 €
(There are half a dozen accepted notations for directional derivatives, including
Dy f(x), Vyf(x) and fy(x). Also, some authors require y to be a unit vector. Luck-
ily, we do not need directional derivatives in our analysis of gradient descent; we
introduce them here just to motivate the notion of gradient.)
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That is, the directional derivative is just the derivative of the univariate function
t — f(x+ty) at 0, that is the derivative of f restricted to the line that passes through
x and goes in the direction y. Note also that the partial derivate with respect to z; is
the same as the directional derivative in the direction (0,0,...,1,...,0), the vector
that has a 1 in the ¢-th coordinate and zeroes in the other coordinate.

The analog of f/(x) for multivariate function is the information about all directional
derivative at x, along all possible directions. This is an infinite amount of data, but,
luckily, it is entirely captured by the n partial derivatives because of the following
(non-trivial) theorem: for every x and every y,

a
dy

o Of of
(x) —yl-a—%(X)+---+yn- 8xn(x)

assuming that all partial derivates exist at x. In other words, if we define the gradient
of f at x as the vector

Vi) = (g g )

then every directional derivative is given by

We will not prove this characterization of the gradient, but let us see one example. If,
as before, f(x1,x9) = 2% — 1179 + 223, then its directional derivative in the direction

y =(1,1)is

df (x) = lim fl@i+ex+6) — f(21,79)
d(l, 1) e—0 €
TN CO ) — (21 4+ €) (w2 + €) + 2(x2 + €)* — o] + 2179 — 213
e—0 €
_ jim 2ex; + €2 — exy — €xg — €2 + dexy + 262
e—0 €

= lim z; + 3xy + 26
e—0

= 21 + 329

and our formula in terms of the gradient correctly gives

(1,1),Vf(x)) = ((1,1), (2x; — x9, —x1 + 4x2)) = z1 + 31



We say that f is (once) differentiable if V f(x) is well defined for every x and the
function x — V f(x) is continuous.

If f is differentiable then it is convex if and only if, for every two points x and z, we
have

f(2) = f(x) + (z — %)V f(x)

and it is strictly convex if the above inequality is strict for all x # z. (Note the
similarity with the f(z) > f(z) + (2 — ) - f’(z) condition in the univariate case.)

Let us now move on to the multivariate analog of second derivatives. For two variables
x; and z; (we allow ¢ = j), the second partial derivative with respect to z; and z;

at x, denoted 852’; -(x) is the partial derivative with respect to x; of the function
10T
X — %(x). A very nice fact is that the order of derivation is not important, that is,
J

if these second partial derivates exist, then

T =2
Gxi('?a:j N 8l'ja$z

Just like the gradient is the n-dimensional vector that contains all partial derivatives,
the Hessian of f at x is the n x n matrix H f(x) such that

B
8xi8:17j

The function f is twice differentiable if the Hessian is always well defined and the
function x — H f(x) is continuous.

Hf(x)i; =

It would be tempting to guess that, for a twice differentiable function, f is convex
if and only if all the entries of the Hessian are > 0. Unfortunately the Hessian
containing only non-negative entries is neither a sufficient nor a necessary condition
for convexity.

For example, at every point, the Hessian of the function f(x1,x9) = 1 - 29 is

(Vo)

but the function is not convex, while the Hessian of the function f(zy,29) = 2% —

T1T9 + 2x§ is
2 -1
-1 4

and f is convex.



Some insight into the right definition comes from considering second directional
derivatives. For every two vectors y,z, if we take the directional derivative of f
in the direction y and then in the direction z, we get

d*f
dzdy

(x) = 2" (H[(z))y

(this is a non-trivial theorem that we will not prove.) In particular, the second
derivative of f at x in the direction y is y7 (H f(x))y.

Now the correct characterization of convexity in term of Hessian is that if f is twice
differentiable, than it is convex if and only for every vectors x and y,

y' (Hf(x)y =0
and it is strictly convex if and only if the above inequality is strict for all y # 0. (If
you have read the previous subsection, we are saying that f is convex if and only if
the Hessian is always positive semidefinite, and it is strictly convex if and only if the
Hessian is always positive definite.)

If f is strictly convex, then either it has no minimum or it has exactly one minimum.
If it is strictly convex and differentiable, then the minimum, if it exists, is the unique
point at which the gradient is zero.

Now we could define higher derivatives, and the analog of the third-derivative will be
a 3-tensor (a 3-dimensional array) and so on, and we could state a Taylor theorem
for multivariate functions, but we will not need that for our analysis of the gradient
descent algorithm. We will need, however, a bound on the error of the first-order
Taylor approximation.

We have the following theorem: if f is twice-differentiable, then for every x and z

F(2) = )+ (5 )TV F(x) + 5 (5= %) (H F(w) 2~ %)

For some w in the line segment between x and z.

In particular, if there are positive numbers ¢ and L such that, for all x and w, we
have

ol < <P (H f(w))x < L - [[x]]?

(in other word, if the eigenvalues of the Hessian are always between ¢ and L) then we
also have

F(x)+ (2= x)"Vf(x)+ gHZ —x[]* < f(2) < (%) + (2 = x)" V(x) + ]z — x]|*
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2 Unconstrained Quadratic Convex Minimization:
Two Applications

2.1 Solving Linear Systems

Suppose that we want to solve the unconstrained minimization problem minycgn f(x)
and that f is a quadratic polynomial. Then it is possible to write f as

f(x) = %XTAX —b'x+e¢

where A is symmetric. (The reason why we did not write it in the more natural form
xT Ax + bTx + ¢ will be clear in a moment.)

We see that the gradient of f is

Vf(x)=Ax—b

and that, at every point, the Hessian of f is just the matrix A. This means that f is
strictly convex if and only if A is positive definite. In such a case, there is a unique
minimum, which is achieved at the unique point x such that Ax = b.

This means that if we want to minimize a strictly convex quadratic function, we can
do so by solving, for example using Gaussian elimination, a linear system where the
matrix of constraints is positive definite.

But it also means that if we want to solve the linear system Ax = b and A is
positive definite, we can do so by solving the unconstrained minimization problem
for f(x) := ix"Ax — b’x. It turns out that, for well-conditioned matrices (i.e.
matrices whose condition number is small), applying gradient descent to minimize
sxTAx — bx is faster, more numerically stable, and more memory efficient than
applying Gaussian elimination.

2.2 Least Squares Regression

Suppose we are given n points in the plane (aq,by), ..., (a,, b,) and we want to find a
line that passes as closely as possible to those points. That is, we want to find a linear
function ¢t — tx + y such that the b; are as close as possible to the values a;x + y.
If we measure the error by the sum of squared-differences, we have the optimization
problem



min Z(ai:v +y — b;)?
i=1

s.t.
r,y € R

Which is strictly convex provided that n > 2. Since the cost function is quadratic,
the problem can be solved either by solving a system of two linear equations in two
variables, or applying gradient descent to a function of two variables. In this case,
solving the linear system is preferable, but for higher-dimensional analog it is generally
better to apply gradient descent.

3 A Good Exercise and a Useful Lemma

In this section we prove the following result.

Lemma 1 Let b and v be an arbitrary n-dimensional vector, r > 0 be a positive real,
and define the function

f(x) := (b,x) + r[|x][]*
Then f s strongly convez, its unique minimum is the point x* = —%b, and, for every

X,

1
b 2> ||bll?
(b, ) + rllx|[* > bl

Proving this result will be a good exercise in applying the definitions of convexity,
Hessian, and gradient, and it will play a key role in the analysis of gradient descent
for general strongly convex functions that we develop in the next section.

Let us start by computing the Hessian of f. The Hessian of (b,x) is zero, because
all second derivatives of a linear function are zero. The Hessian of ||x||* = Y, z7 is
21, and so

Hf(x)=2rl
for all x and it is clearly positive definite. So we have proved that f is strongly
convex.

The gradient of f is
Vf(x)=b+2rx
1

and so the unique point x* such that V f(x*) = 0 is x* = —5-b.

Finally, we have that, for every x,

1 r 1
> N 2, 2 _ _ * 2
f(x) > f(x7) 5, Pll™ + 5 [bll /Pl
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4 Analysis of Gradient Descent

The structure of a gradient descent algorithm is as follows. To implement the algo-
rithm one needs to specify the parts that we wrote in square brackets. We will show
how to do so assuming that we have upper and lower bounds to the eigenvalues of
the Hessian.

e x’ := [initial point]

o =10
e while not [termination condition)]

— compute V f(x")

— ¢€; := [step length at time 1]
— xthi=x"— ¢ - Vf(x)
—di=1+1

e return x°

The intuition for the algorithm is that V f(x) points in the direction in which f
changes most quickly near x, and f increases in the direction of V f(x) and decreases
in the direction of —V f(x). Thus, if, at time ¢, we move from x* by a small multiple
of =V f(x") we should land in a new point with a smaller value of f, meaning that
we are making progress toward reaching the minimum. To get the algorithm to work
correctly, we do not want to move too much, because we may overshoot the minimum,
and actually end up in a worse point than the one we started from, but we also do
not want to move too little, or else it will take a huge number of iterations to reach
the minimum.

In general, finding a good value of ¢ is more an art than a science, and there are
several good heuristics. In the following analysis, we will assume that we know positive
numbers ¢, L such that the eigenvalues of the Hessian are always between ¢ and L
and, in this case, we can make the simple choice of always picking ¢; = 1/L at every
step.

4.1 Quadratic Functions
Let us begin with the special case in which we want to minimize a strictly convex

quadratic function f. We write

f(x) = %XTAX ~b'x +ec
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where A is a symmetric matrix. Suppose that we are given positive numbers ¢, L such
that, for every non-zero vector y,

y' Ay
Iy [?
and suppose that we run the gradient descent algorithm from an initial point x° using

L
2L"

<L

? <

€ =

Let x* be the unique optimum. Then we have

X — x| = |]x" — & - (Ax" — b) — x*]
= th — g AX + ¢, AxXF — x*||
= (I — eA) - (x' —x7)|]
<|II = eAll - Ix" = x7|

V4
< (1——)~|rxt—x*||
2

The last two lines above require a bit of knowledge of linear algebra. It is ok if
you take them on faith and you skip ahead to the next paragraph. The norm of a
matrix M is defined as [|[M|] := sup,o IIII‘\i)Ic‘H so that, by definition, we always have
|| Mx|| < ||M]| - |]x||, explaining the second-to-last line. If M is symmetric, as is
the case for I — ¢, A, then ||M]|| is the largest absolute value of the eigenvalues. The
eigenvalues of [ — €, A are precisely 1 — e\ for every eigenvalue \ of A, and so they are
in the range between 1 —¢,L and 1 —¢,£. If we choose ¢, = %, then all the eigenvalues

are between % and 1 — % and so the norm is at most 1 — 57
So

I = xl < (1 57 ) 10 =

meaning that if we want to guarantee

[1x" = x7|] < o] [x7]|

it is enough to start gradient descent at x° = 0 and then continue for t = O (% log %)
steps.

4.2 General Functions

Let now f be an arbitrary strongly convex functions, and suppose that we are given
two positive numbers ¢, L such that, for every non-zero vector y and every input x
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we have

y (Hf(x))y

(<
Iy ?

<L

Then recall that we also have, for all x and z,

F)+ (%)) + glla =Xl < F(2) < F6)+ (5= x) V() + 2 la I (2)

Suppose that we run gradient descent starting from a point x° using ¢; = % at every
step, for t 4+ 1 steps. Let x* the unique minimum. Then by using the upper bound
in (2) we have

F) = FOx — @V F (<)
< )~ VIV + S V)P
~ 769 (= 56 ) 195G
= ) = IV IO

Note that choice of ¢, = + maximizes the gain €, — €

2L
L to-

Using the lower bound in (2) we have

14
FO) 2 F) + VDT = x) + S llx" = x|
1
> ty t 2
> fx) = 51976
where the second inequality is due to the fact that
l 1
VIE) (" =x) + Sl = x|]” > —Q—EIIVf(Xt)II2

which is a special case of the last part of Lemma 1 (set b = V f(x'), x = x* —x*, and

r=1).

We can also write what we just discovered as

IVFEO* > 20 (f(x) = f(x7))
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and, putting everything together,

FT) < ) =

which is the same as

and so
i) = ) < (1= 1) - (6) - )

In particular, if we want to guarantee that

FO) = f(x7) <0 ((F(X7) = f(x))

we just need to run the algorithm for ¢t = O (% -log %) steps.

4.3 Summary

If f=1ixTAx —bTx+ cis a quadratic strictly convex function, then setting ¢;

2

at each iteration (where L is the largest eigenvalue of A) guarantees convergence in
time linear in the condition number of A and logarithmic in the desired quality of
approximation. (The convergence is in terms of the distance of the point that we find

from the optimum point.)

If f is an arbitrary strictly convex function, and ¢ and L are positive numbers such
that the eigenvalues of the Hessian are always between ¢ and L, then setting ¢; = +
guarantees convergence in time linear in the ratio L/¢ and logarithmic in the desired
approximation. (The convergence is in terms of difference between the cost function

of the point that we find and the cost of the optimum point.)
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