
CS 188
Fall 2018

Introduction to
Artificial Intelligence Practice Midterm 2

To earn the extra credit, one of the following has to hold true. Please circle and sign.

A I spent 2 or more hours on the practice midterm.

B I spent fewer than 2 hours on the practice midterm, but I believe I have solved all the questions.

Signature:

To simulate midterm setting, print out this practice midterm, complete it in writing, and then scan and upload into
Gradescope. It is due on Tuesday 11/13, 11:59pm.
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Exam Instructions:

• You have approximately 2 hours.

• The exam is closed book, closed notes except your one-page cheat sheet.

• Please use non-programmable calculators only.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation. All short answer sections can be successfully answered in a few sentences AT MOST.

First name

Last name

SID

First and last name of student to your left

First and last name of student to your right

For staff use only:
Q1. Probability and Decision Networks /13
Q2. MDPs and Utility: Short Questions /23
Q3. Machine Learning /7
Q4. Bayes’ Net Reasoning /12
Q5. D-Separation /8
Q6. Variable Elimination /19
Q7. Bayes’ Nets Sampling /10
Q8. Modified HMM Updates /8
Q9. Learning a Bayes’ Net Structure /9

Total /109
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Q1. [13 pts] Probability and Decision Networks

A	
  

S	
  

U	
  
T	
  A	
   P(A)	
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   0.5	
  

l	
   0.5	
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e	
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   e	
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l	
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A	
   S	
   P(S|A)	
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   0.2	
  

l	
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   0.4	
  

l	
   l	
   0.6	
  

S	
   P(S)	
  

e	
   0.6	
  

l	
   0.4	
  

S	
   A	
   P(A|S)	
  

e	
   e	
   2/3	
  

e	
   l	
   1/3	
  

l	
   e	
   1/4	
  

l	
   l	
   3/4	
  

Your parents are visiting you for graduation. You are in charge of picking them up at the airport. Their arrival time
(A) might be early (e) or late (l). You decide on a time (T ) to go to the airport, also either early (e) or late (l). Your
sister (S) is a noisy source of information about their arrival time. The probability values and utilities are shown in
the tables above.

Compute P (S), P (A|S) and compute the quantities below.

EU(T = e) = P (A = e)U(A = e, T = e) + P (A = l)U(A = l, T = e) = 0.5 ∗ 600 + 0.5 ∗ 300 = 450

EU(T = l) = P (A = e)U(A = e, T = l) + P (A = l)U(A = l, T = l) = 0.5 ∗ 0 + 0.5 ∗ 600 = 300

MEU({}) = 450

Optimal action with no observations is T = e

Now we consider the case where you decide to ask your sister for input.

EU(T = e|S = e) = P (A = e|S = e)U(A = e, T = e) + P (A = l|S = e)U(A = l, T = e) = 2
3600 + 1

3300 = 500

EU(T = l|S = e) = P (A = E|S = e)U(A = e, T = l) + P (A = l|S = e)U(A = l, T = l) = 2
30 + 1

3600 = 200

MEU({S = e}) = 500

Optimal action with observation {S = e} is T = e
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EU(T = e|S = l) = P (A = e|S = l)U(A = e, T = e) + P (A = l|S = e)U(A = l, T = e) = 1
4600 + 3

4300 = 375

EU(T = l|S = l) = P (A = e|S = l)U(A = e, T = l) + P (A = l|S = l)U(A = l, T = l) = 1
40 + 3

4 ∗ 600 = 450

MEU({S = l}) = 450

Optimal action with observation S = l is T = l

V PI(S) = P (S = e)MEU({S = e}) + P (S = l)MEU({S = l})−MEU({}) = 0.6 ∗ 500 + 0.4 ∗ 450− 450 = 30
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Q2. [23 pts] MDPs and Utility: Short Questions
Each True/False question is worth 2 points. Leaving a question blank is worth 0 points. Answering incorrectly
is worth −2 points.

For the questions that are not True/False, answer as concisely as possible (and no points are subtracted for a wrong
answer to these).

(a) Utility.

(i) [2 pts] [true or false] If an agent has the preference relationship (A � B) ∧ (B � C) ∧ (C � A) then this
agent can be induced to give away all of its money.
For most utility functions over money the answer would be true, but there are some special utility functions
for which it would not be true. As we did not specify a utility function over money, technically the
statement is actually false. The fact that a few special utility functions make this statement false is not
at all the angle we intended to test you on when making this question. We accepted any answer.

(ii) [2 pts] [true or false] Assume Agent 1 has a utility function U1 and Agent 2 has a utility function U2. If
U1 = k1U2 + k2 with k1 > 0, k2 > 0 then Agent 1 and Agent 2 have the same preferences.

For any a, b : U2(a) > U2(b) equivalent to k1U2(a) > k1U2(b) since k1 > 0

k1U2(a) > k1U2(b) equivalent to k1U2(a) + k2 > k1U2(b) + k2 for any k2

(b) Insurance. Some useful numbers: log(101) ≈ 4.6151, log(71) ≈ 4.2627.
PacBaby just found a $100 bill—it is the only thing she owns. Ghosts are nice enough not to kill PacBaby,
but when they find PacBaby they will steal all her money. The probability of the ghosts finding PacBaby is
20%. PacBaby’s utility function is U(x) = log(1 + x) (this is the natural logarithm, i.e., log ex = x), where
x is the total monetary value she owns. When PacBaby gets to keep the $100 (ghosts don’t find her) her
utility is U($100) = log(101). When PacBaby loses the $100 (per the ghosts taking it from her) her utility is
U($0) = log(1 + 0) = 0.

(i) [2 pts] What is the expected utility for PacBaby?

0.8 ∗ log(101) + 0.2 ∗ log(1) = 0.8 ∗ log(101) + 0.2 ∗ 0 ≈ 3.6921

(ii) [4 pts] Pacgressive offers theft insurance: if PacBaby pays an insurance premium of $30, then they will
reimburse PacBaby $70 if the ghosts steal all her money (after paying $30 in insurance, she would only
have $70 left). What is the expected utility for PacBaby if she takes insurance? For PacBaby to maximize
her expected utility should she take this insurance?

When taking insurance, PacBaby’s expected utility equals 0.8 log(1 + 70) + 0.2 log(1 + 70) = log(71) ≈
4.2627. Yes, PacBaby should take the insurance.

(iii) [2 pts] In the above scenario, what is the expected monetary value of selling the insurance from Pacgres-
sive’s point of view?

The expected monetary value equals 0.8 ∗ 30 + 0.2 ∗ (−40) = 16.

(c) MDPs.

(i) [2 pts] [true or false] If the only difference between two MDPs is the value of the discount factor then
they must have the same optimal policy.
A counterexample suffices to show the statement is false. Consider an MDP with two sink states. Tran-
sitioning into sink state A gives a reward of 1, transitioning into sink state B gives a reward of 10. All
other transitions have zero rewards. Let A be one step North from the start state. Let B be two steps
South from the start state. Assume actions always succeed. Then if the discount factor γ < 0.1 the
optimal policy takes the agent one step North from the start state into A, if the discount factor γ > 0.1
the optimal policy takes the agent two steps South from the start state into B.

(ii) [2 pts] [true or false] When using features to represent the Q-function (rather than having a tabular
representation) it is possible that Q-learning does not find the optimal Q-function Q∗.
Whenever the optimal Q-function, Q∗, cannot be represented as a weighted combination of features, then
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the feature-based representation would not even have the expressiveness to find the optimal Q-function,
Q∗.

(iii) [2 pts] [true or false] For an infinite horizon MDP with a finite number of states and actions and with a
discount factor γ, with 0 < γ < 1, value iteration is guaranteed to converge.

(d) [5 pts] Recall that for a deterministic policy π where π(s) is the action to be taken in state s we have that the
value of the policy satisfies the following equations:

V π(s) =
∑
s′ T (s, π(s), s′) (R(s, π(s), s′) + γV π(s′)) .

Now assume we have a stochastic policy π where π(s, a) = P (a|s) is equal to the probability of taking action
a when in state s. Write the equivalent of the above equation for the value of this stochastic policy.

V π(s) =
∑
a

π(s, a)
∑
s′

T (s, a, s′) (R(s, a, s′) + γV π(s′))
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Q3. [7 pts] Machine Learning
(a) Maximum Likelihood

(i) [4 pts] Geometric Distribution

Consider the geometric distribution, which has P (X = k) = (1− θ)k−1θ. Assume in our training data X
took on the values 4, 2, 7, and 9.

(a) Write an expression for the log-likelihood of the data as a function of the parameter θ.

L(θ) = P (X = 4)P (X = 2)P (X = 7)P (X = 9) = (1− θ)3θ(1− θ)1θ(1− θ)6θ(1− θ)8θ = (1− θ)18θ4

logL(θ) = 18 log(1− θ) + 4 log θ

(b) What is the value of θ that maximizes the log-likelihood, i.e., what is the maximum likelihood estimate
for θ?
At the maximum we have: ∂ logL(θ)

∂θ = 18 −11−θ + 4 1
θ = 0

After multiplying with (1− θ)θ, −18θ + 4(1− θ) = 0 and hence we have an extremum at θ = 4
22

Also: ∂2 logL(θ)
∂θ2 = −18

(1−θ)2 −
4
θ2 < 0 hence extremum is indeed a maximum, and hence θML = 4

22 .

(ii) [3 pts] Consider the Bayes’ net consisting of just two variables A,B, and structure A → B. Find the
maximum likelihood estimates and the k = 2 Laplace estimates for each of the table entries based on the
following data: (+a,−b), (+a,+b), (+a,−b), (−a,−b), (−a,−b).

A PML(A) PLaplace, k=2(A)

+a 3
5

5
9

−a 2
5

4
9

A B PML(B | A) PLaplace, k=2(B | A)

+a +b 1
3

3
7

+a −b 2
3

4
7

−a +b 0 2
6

−a −b 1 4
6
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Q4. [12 pts] Bayes’ Net Reasoning

P (A|D,X)
+d +x +a 0.9
+d +x −a 0.1
+d −x +a 0.8
+d −x −a 0.2
−d +x +a 0.6
−d +x −a 0.4
−d −x +a 0.1
−d −x −a 0.9

P (D)
+d 0.1
−d 0.9

P (X|D)
+d +x 0.7
+d −x 0.3
−d +x 0.8
−d −x 0.2

P (B|D)
+d +b 0.7
+d −b 0.3
−d +b 0.5
−d −b 0.5

(a) [3 pts] What is the probability of having disease D and getting a positive result on test A?

P (+d,+a) =∑
x P (+d, x,+a) =

∑
x P (+a| + d, x)P (x| + d)P (+d) = P (+d)

∑
x P (+a| + d, x)P (x| + d) = (0.1)((0.9)(0.7) +

(0.8)(0.3)) = 0.087

(b) [3 pts] What is the probability of not having disease D and getting a positive result on test A?

P (−d,+a) =
∑
x P (−d, x,+a) =

∑
x P (+a| − d, x)P (x| − d)P (−d) = P (−d)

∑
x P (+a| − d, x)P (x| − d) =

(0.9)((0.6)(0.8) + (0.1)(0.2)) = 0.45

(c) [3 pts] What is the probability of having disease D given a positive result on test A?

P (+d|+ a) = P (+a,+d)
P (+a) = P (+a,+d)∑

d P (+a,d) = 0.087
0.087+0.45 ≈ 0.162

(d) [3 pts] What is the probability of having disease D given a positive result on test B?

P (+d|+ b) = P (+b|+d)P (+d)
P (+b) = P (+b|+d)P (+d)∑

d P (+b|d)P (d) = (0.7)(0.1)
(0.7)(0.1)+(0.5)(0.9) ≈ 0.135
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Q5. [8 pts] D-Separation
(a) [8 pts] Based only on the structure of the (new) Bayes’ Net given below, circle whether the following conditional

independence assertions are guaranteed to be true, guaranteed to be false, or cannot be determined by the
structure alone.

U 

W

V 

Y 

X 

Z 

U ⊥⊥ V Guaranteed true Cannot be determined Guaranteed false

U ⊥⊥ V |W Guaranteed true Cannot be determined Guaranteed false

U ⊥⊥ V | Y Guaranteed true Cannot be determined Guaranteed false

U ⊥⊥ Z |W Guaranteed true Cannot be determined Guaranteed false

U ⊥⊥ Z | V, Y Guaranteed true Cannot be determined Guaranteed false

U ⊥⊥ Z | X,W Guaranteed true Cannot be determined Guaranteed false

W ⊥⊥ X | Z Guaranteed true Cannot be determined Guaranteed false

V ⊥⊥ Z | X Guaranteed true Cannot be determined Guaranteed false
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Q6. [19 pts] Variable Elimination

(a) [10 pts] For the Bayes’ net below, we are given the query P (Z | +y). All variables have binary domains.
Assume we run variable elimination to compute the answer to this query, with the following variable elimination
ordering: U , V , W , T , X.

Complete the following description of the factors generated in this process:

After inserting evidence, we have the following factors to start out with:

P (U), P (V ), P (W |U, V ), P (X|V ), P (T |V ), P (+y|W,X), P (Z|T ).

When eliminating U we generate a new factor f1 as follows:

f1(W |V ) =
∑
u

P (u)P (W |u, V ).

This leaves us with the factors:

P (V ), P (X|V ), P (T |V ), P (+y|W,X), P (Z|T ), f1(W |V ).

When eliminating V we generate a new factor f2 as follows:

f2(T,W,X) =
∑
v

P (v)P (X|v)P (T |v)f1(W |v).

This leaves us with the factors:

P (+y|W,X), P (Z|T ), f2(T,W,X).

When eliminating W we generate a new factor f3 as follows:
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f3(T,X,+y) =
∑
w

P (+y|w,X)f2(T,w,X).

This leaves us with the factors:

P (Z|T ), f3(T,X,+y).

When eliminating T we generate a new factor f4 as follows:

f4(X,+y, Z) =
∑
t

P (Z|t)f3(t,X,+y).

This leaves us with the factor:

f4(X,+y, Z).

When eliminating X we generate a new factor f5 as follows:

f5(+y, Z) =
∑
x

f4(x,+y, Z).

This leaves us with the factor:

f5(+y, Z)

.

(b) [2 pts] Briefly explain how P (Z | +y) can be computed from f5.

Simply renormalize f5 to obtain P (Z | +y). Concretely, P (z | +y) = f5(z,+y)∑
z′ f5(z

′,y) .

(c) [2 pts] Amongst f1, f2, . . . , f5, which is the largest factor generated? (Assume all variables have binary domains.)
How large is this factor?

f2(T,W,X) is the largest factor generated. It has 3 variables, hence 23 = 8 entries.

(d) [5 pts] Find a variable elimination ordering for the same query, i.e., for P (Z | +y), for which the maximum
size factor generated along the way is smallest. Hint: the maximum size factor generated in your solution
should have only 2 variables, for a size of 22 = 4 table. Fill in the variable elimination ordering and the factors
generated into the table below.

Note: in the naive ordering we used earlier, the first line in this table would have had the following two entries: U ,
f1(W |V ).

Note: multiple orderings are possible.
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Variable Eliminated Factor Generated

T f1(Z|V )

X f2(+y|W,V )

W f3(+y|U, V )

U f4(+y|V )

V f5(+y, Z)

Q7. [10 pts] Bayes’ Nets Sampling
Assume the following Bayes net, and the corresponding distributions over the variables in the Bayes net:

A 
C 

D 
B 

A P (A)

+a 1/5
−a 4/5

A B P (B|A)

+a +b 1/5
+a −b 4/5
−a +b 1/2
−a −b 1/2

B C P (C|B)

+b +c 1/4
+b −c 3/4
−b +c 2/5
−b −c 3/5

B D P (D|B)

+b +d 1/2
+b −d 1/2
−b +d 4/5
−b −d 1/5

(a) [2 pts] Your task is now to estimate P (+b| − a,−c,−d) using rejection sampling. Below are some samples that
have been produced by prior sampling (that is, the rejection stage in rejection sampling hasn’t happened yet).
Cross out the samples that would be rejected by rejection sampling:

−a − b + c + d
+a − b − c + d
−a − b + c − d

−a − b − c − d
−a + b + c + d
+a − b − c − d

(b) [1 pt] Using those samples, what value would you estimate for P (+b| − a,−c,−d) using rejection sampling?

0

(c) [3 pts] Using the following samples (which were generated using likelihood weighting), estimate P (+b | −a,−c,−d)
using likelihood weighting, or state why it cannot be computed.

−a −b −c −d
−a +b −c −d
−a −b −c −d

We compute the weights of each solution, which are the product of the probabilities of the evidence variables
conditioned on their parents.

w1 = w3 = P (−a)P (−c | −b)P (−d | −b) = 4/5 ∗ 3/5 ∗ 1/5 = 12/125

w2 = P (−a)P (−c | +b)P (−d | +b) = 4/5 ∗ 3/4 ∗ 1/2 = 12/40
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so normalizing, we have (w2)/(w2 + w1 + w3) = 12/40
12/40+12/125+12/125 = 25

41 ≈ 0.609756.

(d) (i) [2 pts] Consider the query P (A| − b,−c). After rejection sampling we end up with the following four sam-
ples: (+a,−b,−c,+d), (+a,−b,−c,−d), (+a,−b,−c,−d), (−a,−b,−c,−d). What is the resulting estimate
of P (+a| − b,−c)?
3
4 .

(ii) [2 pts] Consider again the query P (A|−b,−c). After likelihood weighting sampling we end up with the fol-
lowing four samples: (+a,−b,−c,−d), (+a,−b,−c,−d), (−a,−b,−c,−d), (−a,−b,−c,+d), and respective
weights: 0.1, 0.1, 0.3, 0.3. What is the resulting estimate of P (+a| − b,−c) ?

0.1+0.1
0.1+0.1+0.3+0.3 = 0.2

0.8 = 1
4

14



Q8. [8 pts] Modified HMM Updates
(a) Recall that for a standard HMM the Elapse Time update and the Observation update are of the respective

forms:

P (Xt | e1:t−1) =
∑
xt−1

P (Xt | xt−1)P (xt−1 | e1:t−1)

P (Xt | e1:t) ∝ P (Xt | e1:t−1)P (et | xt)

We now consider the following two HMM-like models:

X1 X2 X3

Z1 Z2 Z3

E1 E2 E3

· · ·

X1 X2 X3

Z1 Z2 Z3

E1 E2 E3

· · ·

(i) (ii)

Mark the modified Elapse Time update and the modified Observation update that correctly compute the beliefs
from the quantities that are available in the Bayes’ Net. (Mark one of the first set of six options, and mark
one of the second set of six options for (i), and same for (ii).)

(i) [4 pts]

 P (Xt, Zt | e1:t−1) =
∑
xt−1,zt−1

P (xt−1, zt−1 | e1:t−1)P (Xt | xt−1, zt−1)P (Zt)

# P (Xt, Zt | e1:t−1) =
∑
xt−1,zt−1

P (xt−1, zt−1 | e1:t−1)P (Xt | xt−1, zt−1)

# P (Xt, Zt | e1:t−1) =
∑
xt−1,zt−1

P (xt−1, zt−1 | e1:t−1)P (Xt, Zt | xt−1, zt−1)

# P (Xt, Zt | e1:t−1) =
∑
xt−1

P (xt−1, zt−1 | e1:t−1)P (Xt | xt−1, zt−1)P (Zt)

# P (Xt, Zt | e1:t−1) =
∑
xt−1

P (xt−1, zt−1 | e1:t−1)P (Xt | xt−1, zt−1)

# P (Xt, Zt | e1:t−1) =
∑
xt−1

P (xt−1, zt−1 | e1:t−1)P (Xt, Zt | xt−1, zt−1)

In the elapse time update, we want to get from P (Xt−1, Zt−1|e1:t−1) to P (Xt, Zt|e1:t−1).

P (Xt, Zt|e1:t−1) =
∑

xt−1,zt−1

P (Xt, Zt, xt−1, zt−1|e1:t−1)

=
∑

xt−1,zt−1

P (xt−1, zt−1|e1:t−1)P (Xt|xt−1, zt−1, e1:t−1)P (Zt|Xt, xt−1, zt−1, e1:t−1)

=
∑

xt−1,zt−1

P (xt−1, zt−1|e1:t−1)P (Xt|xt−1, zt−1)P (Zt)

First line: marginalization, second line: chain rule, third line: conditional independence assumptions.

 P (Xt, Zt | e1:t) ∝ P (Xt, Zt | e1:t−1)P (et | Xt, Zt)

# P (Xt, Zt | e1:t) ∝
∑
Xt
P (Xt, Zt | e1:t−1)P (et | Xt, Zt)

# P (Xt, Zt | e1:t) ∝
∑
Zt
P (Xt, Zt | e1:t−1)P (et | Xt, Zt)

# P (Xt, Zt | e1:t) ∝ P (Xt, Zt | e1:t−1)P (et | Xt)P (et | Zt)
# P (Xt, Zt | e1:t) ∝ P (Xt, Zt | e1:t−1)P (et | Xt)

# P (Xt, Zt | e1:t) ∝ P (Xt, Zt | e1:t−1)
∑
Xt
P (et | Xt)

In the observation update, we want to get from P (Xt, Zt|e1:t−1) to P (Xt, Zt|e1:t).

P (Xt, Zt|e1:t) ∝ P (Xt, Zt, et|e1:t−1)

∝ P (Xt, Zt|e1:t−1)P (et|Xt, Zt, e1:t−1)

∝ P (Xt, Zt|e1:t−1)P (et|Xt, Zt)

First line: normalization, second line: chain rule, third line: conditional independence assumptions.
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(ii) [4 pts]

# P (Xt, Zt | e1:t−1) =
∑
xt−1,zt−1

P (xt−1, zt−1 | e1:t−1)P (Xt | xt−1, zt−1)P (Zt | et−1)

 P (Xt, Zt | e1:t−1) =
∑
xt−1,zt−1

P (xt−1, zt−1 | e1:t−1)P (Zt | et−1)P (Xt | xt−1, Zt)
# P (Xt, Zt | e1:t−1) =

∑
xt−1,zt−1

P (xt−1, zt−1 | e1:t−1)P (Xt, Zt | xt−1, et−1)

# P (Xt, Zt | e1:t−1) =
∑
xt−1

P (xt−1, zt−1 | e1:t−1)P (Xt | xt−1, zt−1)P (Zt | et−1)

# P (Xt, Zt | e1:t−1) =
∑
xt−1

P (xt−1, zt−1 | e1:t−1)P (Zt | et−1)P (Xt | xt−1, Zt)
# P (Xt, Zt | e1:t−1) =

∑
xt−1

P (xt−1, zt−1 | e1:t−1)P (Xt, Zt | xt−1, et−1)

In the elapse time update, we want to get from P (Xt−1, Zt−1|e1:t−1) to P (Xt, Zt|e1:t−1).

P (Xt, Zt|e1:t−1) =
∑

xt−1,zt−1

P (Xt, Zt, xt−1, zt−1|e1:t−1)

=
∑

xt−1,zt−1

P (xt−1, zt−1|e1:t−1)P (Zt|xt−1, zt−1, e1:t−1)P (Xt|Zt, xt−1, zt−1, e1:t−1)

=
∑

xt−1,zt−1

P (xt−1, zt−1|e1:t−1)P (Zt|et−1)P (Xt|xt−1, Zt)

First line: marginalization, second line: chain rule, third line: conditional independence assumptions.

 P (Xt, Zt | e1:t) ∝ P (Xt, Zt | e1:t−1)P (et | Xt, Zt)

# P (Xt, Zt | e1:t) ∝
∑
Xt
P (Xt, Zt | e1:t−1)P (et | Xt, Zt)

# P (Xt, Zt | e1:t) ∝
∑
Zt
P (Xt, Zt | e1:t−1)P (et | Xt, Zt)

# P (Xt, Zt | e1:t) ∝ P (Xt, Zt | e1:t−1)P (et | Xt)P (et | Zt)
# P (Xt, Zt | e1:t) ∝ P (Xt, Zt | e1:t−1)P (et | Xt)

# P (Xt, Zt | e1:t) ∝ P (Xt, Zt | e1:t−1)
∑
Xt
P (et | Xt)

In the observation update, we want to get from P (Xt, Zt|e1:t−1) to P (Xt, Zt|e1:t).

P (Xt, Zt|e1:t) ∝ P (Xt, Zt, et|e1:t−1)

∝ P (Xt, Zt|e1:t−1)P (et|Xt, Zt, e1:t−1)

∝ P (Xt, Zt|e1:t−1)P (et|Xt, Zt)

First line: normalization, second line: chain rule, third line: conditional independence assumptions.
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Q9. [9 pts] Learning a Bayes’ Net Structure
You want to learn a Bayes’ net over the random variables A,B,C. You decide you want to learn not only the Bayes’
net parameters, but also the structure from the data. You are willing to consider the 8 structures shown below. First
you use your training data to perform maximum likelihood estimation of the parameters of each of the Bayes’ nets.
Then for each of the learned Bayes’ nets, you evaluate the likelihood of the training data (ltrain), and the likelihood
of your cross-validation data (lcross). Both likelihoods are shown below each structure.

A	
  

C	
  B	
  

A	
  

C	
  B	
  

A	
  

C	
  B	
  

A	
  

C	
  B	
  
ltrain 0.0001 0.0005 0.0015 0.0100
lcross 0.0001 0.0004 0.0011 0.0009

(a) (b) (c) (d)

A	
  

C	
  B	
  

A	
  

C	
  B	
  

A	
  

C	
  B	
  

A	
  

C	
  B	
  
ltrain 0.0008 0.0015 0.0020 0.0100
lcross 0.0006 0.0011 0.0010 0.0009

(e) (f) (g) (h)

(a) [3 pts] Which Bayes’ net structure will (on expectation) perform best on test-data? (If there is a tie, list all
Bayes’ nets that are tied for the top spot.) Justify your answer.

Bayes’ nets (c) and (f) as they have the highest cross validation data likelihood.

(b) [3 pts] Two pairs of the learned Bayes’ nets have identical likelihoods. Explain why this is the case.

(c) and (f) have the same likelihoods, and (d) and (h) have the same likelihoods. When learning a Bayes’ net
with maximum likelihood, we end up selecting the distribution that maximizes the likelihood of the training
data from the set of all distributions that can be represented by the Bayes’ net structure. (c) and (f) have the
same set of conditional independence assumptions, and hence can represent the same set of distributions. This
means that they end up with the same distribution as the one that maximizes the training data likelihood, and
therefore have identical training and cross validation likelihoods. Same holds true for (d) and (h).

(c) [3 pts] For every two structures S1 and S2, where S2 can be obtained from S1 by adding one or more edges,
ltrain is higher for S2 than for S1. Explain why this is the case. When learning a Bayes’ net with maximum
likelihood, we end up selecting the distribution that maximizes the likelihood of the training data from the
set of all distributions that can be represented by the Bayes’ net structure. Adding an edge grows the set of
distributions that can be represented by the Bayes’ net, and can hence only increase the training data likelihood
under the best distribution in this set.
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