
CS 188 Introduction to Artificial Intelligence
Spring 2019 Note 6

These lecture notes are heavily based on notes originally written by Josh Hug and Jacky Liang.

Probabilistic Inference
In artificial intelligence, we often want to model the relationships between various nondeterministic events.
If the weather predicts a 40% chance of rain, should I carry my umbrella? How many scoops of ice cream
should I get if the more scoops I get, the more likely I am to drop it all? If there was an accident 15 minutes
ago on the freeway on my route to Oracle Arena to watch the Warriors’ game, should I leave now or in 30
minutes? All of these questions (and innumerable more) can be answered with probabilistic inference.

We’re assuming that you’ve learned the foundations of probability in CS70, so these notes will assume a
basic understanding of standard concepts in probability like PDFs, conditional probabilities, independence,
and conditional independence.

In previous sections of this class, we modeled the world as existing in a specific state that is always known.
For the next several weeks, we will instead use a new model where each possible state for the world has
its own probability. For example, we might build a weather model, where the state consists of the season,
temperature and weather. Our model might say that P(winter, 35◦, cloudy) = 0.023. This number represents
the probability of the specific outcome that it is winter, 35◦, and cloudy.

More precisely, our model is a joint distribution, i.e. a table of probabilities which captures the likelihood
of each possible outcome, also known as an assignment. As an example, consider the table below:

Season Temperature Weather Probability
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20

This model allows us to answer questions that might be of interest to us, for example:

• What is the probability that it is sunny? P(W = sun)

• What is the probability distribution for the weather, given that we know it is winter? P(W | S=winter)

• What is the probability that it is winter, given that we know it is rainy and cold? P(S = winter | T =
cold,W = rain)

CS 188, Spring 2019, Note 6 1

• What is the probability distribution for the weather and season give that we know that it is cold?
P(S,W | T = cold)

Given a joint PDF, we can trivially perform compute any desired probablity distribution P(Q1 . . .Qk | e1 . . .ek)
using a simple and intuitive procedure known as inference by enumeration, for which we define three types
of variables we will be dealing with:

1. Query variables Qi, which are unknown and appear on the left side of the probability distribution we
are trying to compute.

2. Evidence variables ei, which are observed variables whose values are known and appear on the right
side of the probability distribution we are trying to compute.

3. Hidden variables, which are values present in the overall joint distribution but not in the distribution
we are currently trying to compute.

In this procedure, we collect all the rows consistent with the observed evidence variables, sum out all the
hidden variables, and finally normalize the table so that it is a probability distribution (i.e. values sum to 1).

For example, if we wanted to compute P(W | S = winter), we’d select the four rows where S is winter, then
sum out over T and normalize. This yields the following probability table:

W S Unnormalized Sum Probability
sun winter 0.10+0.15 = 0.25 0.25/(0.25+0.25) = 0.5
rain winter 0.05+0.20 = 0.25 0.25/(0.25+0.25) = 0.5

Hence P(W = sun | S = winter) = 0.5 and P(W = rain | S = winter) = 0.5, and we learn that in winter
there’s a 50% chance of sun and a 50% chance of rain (classic California weather).

So long as we have the joint PDF table, inference by enumeration (IBE) can be used to compute any desired
probablity distribution, even for multiple query variables Q1...Qk.

Bayes Nets (Representation)
While inference by enumeration can compute probabilities for any query we might desire, representing an
entire joint distribution in the memory of a computer is impractical for real problems - if each of n variables
we wish to represent can take on d possible values (it has a domain of size d), then our joint distribution
table will have dn entries, exponential in the number of variables and quite impractical to store!

Bayes nets avoid this issue by taking advantage of the idea of conditional probability. Rather than storing
information in a giant table, probabilities are instead distributed across a large number of smaller local
probability tables along with a directed acyclic graph (DAG) which captures the relationships between
variables. The local probability tables and the DAG together encode enough information to compute any
probability distribution that we could have otherwise computed given the entire joint distribution.

Specifically, each node in the graph represents a single conditional probability table that is stored, and is
conditioned on its parents. For example, a node C with parent nodes A and B indicates that we store the
probability table P(C|A,B)). This is a result of the fundamental simplifying assumption which belies Bayes
Net structure: each node is conditionally independent of all its ancestor nodes in the graph, given all of

CS 188, Spring 2019, Note 6 2

its parents. Thus, if we have a node representing variable X , we store P(X |A1,A2, ...,AN), where A1, ...,AN

are the parents of X .

As an example of a Bayes Net, consider a model where we have five binary random variables described
below:

• B: Burglary occurs.

• A: Alarm goes off.

• E: Earthquake occurs.

• J: John calls.

• M: Mary calls.

Assume the alarm can go off if either a burglary or an earthquake occurs, and that Mary and John will call
if they hear the alarm. We can represent these dependencies with the graph shown below.

As a reality check, it’s important to internalize that Bayes Nets are only a type of model. Models attempt
to capture the way the world works, but because they are always a simplification they are always wrong.
However, with good modeling choices they can still be good enough approximations that they are useful
for solving real problems in the real world. In general, they will not account for every variable or even
every interaction between variables. By making these modeling assumptions, we can exploit graphical
structure to produce incredibly efficient inference techniques that are often more practically useful than
simple procedures like inference by enumeration.

Returning to our discussion, we formally define a Bayes Net as consisting of:

• A directed acyclic graph of nodes, one per variable X .

• A conditional distribution for each node P(X |A1 . . .An), where Ai is the ith parent of X , stored as a
conditional probability table or CPT. Each CPT has n+2 columns: one for the values of each of the
n parent variables A1 . . .An, one for the values of X , and one for the conditional probability of X .

CS 188, Spring 2019, Note 6 3

In the alarm model above, we would store probability tables P(B),P(E),P(A | B,E),P(J | A) and P(M | A).
Given all of the CPTs for a graph, we can calculate the probability of a given assignment using the chain
rule: P(X1,X2, . . . ,Xn) = ∏

n
i=1 P(Xi|parents(Xi)).

For the alarm model above, we might calculate the probability of one event as follows: P(−b,−e,+a,+ j,−m)=
P(−b) ·P(−e) ·P(+a|−b,−e) ·P(+ j|+a) ·P(−m|+a).

This works because of the conditional independence relationships given by the graph. Specifically, we rely
on the fact that P(xi|x1, . . . ,xi−1) = P(xi|parents(Xi)). Or in other words, that the probability of a specific
value of Xi depends only on the values assigned to Xi’s parents.

Bayes Nets (Inference)
Inference is the process of calculating the joint PDF for some set of query variables based on some set
of observed variables. We can solve this problem naively by forming the joint PDF and using inference by
enumeration as described above. This requires the creation of and iteration over an exponentially large table.

An alternate approach is to eliminate variables one by one. To eliminate a variable X , we:

1. Join (multiply together) all factors involving X .

2. Sum out X .

A factor is defined simply as an unnormalized probability. At all points during variable elimination, each
factor will be proportional to the probability it corresponds to but the underlying distribution for each factor
won’t necessarily sum to 1 as a probability distribution should.

Let’s make these ideas more concrete with an example. Suppose we have a model as shown below, where
T , C, S, and E can take on binary values, as shown below. Here, T represents the chance that an adventurer
takes a treasure, C represents the chance that a cage falls on the adventurer given that he takes the treasure,
S represents the chance that snakes are released if an adventurer takes the treasure, and E represents the
chance that the adventurer escapes given information about the status of the cage and snakes.

In this case, we have the factors P(T), P(C|T), P(S|T), and P(E|C,S). Suppose we want to calculate
P(T |+ e). The inference by enumeration approach would be to form the 16 row joint PDF P(T,C,S,E),
select only the rows corresponding to +e, then summing out C and S and finally normalizing.

The alternate approach is to eliminate C, then S, one variable at a time. We’d proceed as follows:

CS 188, Spring 2019, Note 6 4

• Join (multiply) all the factors involving C, forming P(C,+e|T,S) = P(C|T) ·P(+e|C,S).

• Sum out C from this new factor, leaving us with a new factor P(+e|T,S).

• Join all factors involving S, forming P(+e,S|T) = P(S|T) ·P(+e|T,S).

• Sum out S, yielding P(+e|T).

Once we have P(+e|T), we can easily compute P(T |+ e).

While this process is more involved from a conceptual point of view, the maximum size of any factor
generated is only 8 rows instead of 16 as it would be if we formed the entire joint PDF.

An alternate way of looking at the problem is to observe that the calculation of P(+e,T) can either be done,
as it is in inference by enumeration, as follows:

∑
s

∑
c

P(T)P(s|T)P(c|T)P(+e|c,s)

Variable elimination is equivalent to calculating P(+e,T) as follows:

P(T)∑
s

P(s|T)∑
c

P(c|T)P(+e|c,s)

As a final note on variable elimination, it’s important to observe that it only improves on inference by
enumeration if we are able to limit the size of the largest factor to a reasonable value that is less than the
total number of variable in the graph.

Bayes Nets (Sampling)
An alternate approach for probabilistic reasoning is to implicitly calculate the probabilities for our query by
simply counting samples.

For example, suppose we wanted to calculate P(T |+ e). If we had a magic machine that could generate
samples from our distribution, we could collect all samples for which the adventurer escapes the maze, and
then compute the fraction of those escapes for which the adventurer also took the treasure. Put differently,
if we could run simulations of say, a few million adventurers, we’d easily be able to compute any inference
we’d want just by looking at the samples.

Given a Bayes Net model, we can easily write a simulator. For example, consider the CPTs given below for
the simplified model with only two variables T and C.

CS 188, Spring 2019, Note 6 5

A simple simulator in Python would be as follows:

import random

def get_t():
if random.random() < 0.99:

return True
return False

def get_c(t):
if t and random.random() < 0.95:

return True
return False

def get_sample():
t = get_t()
c = get_c(t)
return [t, c]

We call this simple approach prior sampling. The downside of this approach is that it may require the
generation of a very large number of samples in order to perform analysis of unlikely scenarios. If we
wanted to compute P(C|− t), we’d have to throw away 99% of our samples.

One way to mitigate this this problem, we can modify our procedure to early reject any sample inconsistent
with our evidence. For example, for the query P(C|− t), we’d avoid generating a value for C unless t is true.
This still means we have to throw away most of our samples, but at least the bad samples we generate take
less time to create. We call this approach rejection sampling.

These two approaches work for the same reason, which is that any valid sample occurs with the same

CS 188, Spring 2019, Note 6 6

probability as specified in the joint PDF. In other words, the probability of every sample is based on the
product of every CPT, or as I personally call it, the "every CPT participates principle".

A more exotic approach is likelihood weighting, which ensures that we never generate a bad sample. In
this approach, we manually set all variables equal to the evidence in our query. For example, if we wanted
to compute P(C|− t), we’d simply declare that t is false. The problem here is that this may yield samples
that are inconsistent with the correct distribution. As an example, consider the more complex four variable
model for T, C, S, and E given earlier in these notes. If we wanted to compute P(T,S,+c,+e), and simply
picked values for T and S without taking into account the fact that c = false, and e = true, then there’s no
guarantee that our samples actually obey the joint PDF given by the Bayes Net. For example, if the cage
only ever falls if the treasure is taken, then we’d want to ensure that T is always true instead of using the
P(T) distribution given in the Bayes Net.

Put differently, if we simply force some variables equal to the evidence, then our samples occur with proba-
bility given only equal to the products of the CPTs of the non-evidence variables. This means the joint PDF
has no guarantee of being correct (though may be for some cases like our two variable Bayes Net). Instead,
if we have sampled variables Z1 through Zp and fixed evidence variables E1 through Em a sample is given
by the probability P(Z1...Zp,E1...Em) = ∏

p
i P(Zi)|Parents(Zi). What is missing is that the probability of a

sample does not include all the probabilities of P(Ei|Parents(Ei)), i.e. not every CPT participates.

Likelihood weighting solves this issue by using a weight for each sample, which is the probability of the
evidence variables given the sampled variables. That is, instead of counting all samples equally, we can
define a weight w j for sample j that reflects how likely the observed values for the evidence variables are,
given the sampled values. In this way, we ensure that every CPT participates. To do this, we iterate through
each variable in the Bayes net, as we do for normal sampling), sampling a value if the variable is not an
evidence variable, or changing the weight for the sample if the variable is evidence.

For example, suppose we want to calculate P(T |+ c,+e). For the jth sample, we’d perform the following
algorithm:

• Set w j to 1.0, and c = true and e = true.

• For T : This is not an evidence variable, so we sample t j from P(T).

• For C: This is an evidence variable, so we multiply the weight of the sample by P(+c|t j), i.e. w j =
w j ·P(+c|t j).

• For S: sample s j from P(S | t j).

• For E: multiply the weight of the sample by P(+e|+ c,s j), i.e. w j = w j ·P(+e|+ c,s j).

Then when we perform the usual counting process, we weight sample j by w j instead of 1, where 0 <=
w j <= 1. This approach works because in the final calculations for the probabilities, the weights effectively
serve to replace the missing CPTs. In effect, we ensure that the weighted probability of each sample is given
by P(z1...zp,e1...em) = [∏

p
i P(zi | Parents(zi))] · [∏m

i P(ei) | Parents(ei))].

For all three of our sampling methods (prior sampling, rejection sampling, and likelihod weighting), we
can get increasing amounts of accuracy by generating additional samples. However, of the three, likelihood
weighting is the most computationally efficient, for reasons beyond the scope of this course.

Gibbs Sampling is a fourth approach for sampling. In this approach, we first set all variables to some totally
random value (not taking into account any CPTs). We then repeatedly pick one variable at a time, clear its
value, and resample it given the values currently assigned to all other variables.

CS 188, Spring 2019, Note 6 7

For the T,C,S,E example above, we might assign t = true, c = true, s = false, and e = true. We then pick
one of our four variables to resample, say S, and clear it. We then pick a new variable from the distribution
P(S|+ t,+c,+e). This requires us knowing this conditional distribution. It turns out that we can easily
compute the distribution of any single variable given all other variables. More specifically, P(S|T,C,E) can
be calculated only using the CPTs that connect S with its neighbors. Thus, in a typical Bayes Net, where
most variables have only a small number of neighbors, we can precompute the conditional distributions for
each variable given all of its neighbors in linear time.

We will not prove this, but if we repeat this process enough times, our later samples will eventually converge
to the correct distribution even though we may start from a low-probability assignment of values. If you’re
curious, there are some caveats beyond the scope of the course that you can read about under the Failure
Modes section of the Wikipedia article for Gibbs Sampling.

Bayes Nets (D-Separation) (Optional)
One useful question to ask about a set of random variables is whether or not one variable is independent from
another, or if one random variable is conditionally independent of another given a third random variable.
Bayes’ Nets representation of joint probability distributions gives us a way to quickly answer such questions
by inspecting the topological structure of the graph.

We already mentioned that a node is conditionally independent of all its ancestor nodes in the graph
given all of its parents.

We will present all three canonical cases of connected three-node two-edge Bayes’ Nets, or triples, and the
conditional independence relationships they express.

Causal Chains

Figure 1: Causal Chain with no observations. Figure 2: Causal Chain with Y observed.

Figure 1 is a configuration of three nodes known as a causal chain. It expresses the following representation
of the joint distribution over X , Y , and Z:

P(x,y,z) = P(z|y)P(y|x)P(x)

It’s important to note that X and Z are not guaranteed to be independent, as shown by the following coun-
terexample:

P(y|x) =

{
1 if x = y
0 else

P(z|y) =

{
1 if z = y
0 else

In this case, P(z|x) = 1 if x = z and 0 otherwise, so X and Z are not independent.

CS 188, Spring 2019, Note 6 8

However, we can make the statement that X ⊥⊥ Z | Y , as in Figure 2. Recall that this conditional indepdence
means:

P(X |Z,Y) = P(X |Y)

We can prove this statement as follows:

P(X |Z,y) =
P(X ,Z,y)

P(Z,y)
=

P(Z|y)P(y|X)P(X)

∑x P(X ,y,Z)
=

P(Z|y)P(y|X)P(X)

P(Z|y)∑x P(y|x)P(x)

=
P(y|X)P(X)

∑x P(y|x)P(x)
=

P(y|X)P(X)

P(y)
= P(X |y)

An analogous proof can be used to show the same thing for the case where X has multiple parents. To
summarize, in the causal chain chain configuration, X ⊥⊥ Z | Y .

Common Cause

Figure 3: Common Cause with no observations. Figure 4: Common Cause with Y observed.

Another possible configuration for a triple is the common cause. It expresses the following representation:

P(x,y,z) = P(x|y)P(z|y)P(y)

Just like with causal chain, we can show that X is not guaranteed to be independent of Z with the following
counterexample distribution:

P(x|y) =

{
1 if x = y
0 else

P(z|y) =

{
1 if z = y
0 else

Then P(x|z) = 1 if x = z and 0 otherwise, so X and Z are not independent.

But it is true that X ⊥⊥ Z | Y . That is, X and Z are independent if Y is observed as in Figure 4. We can show
this as follows:

P(X |Z,y) = P(X ,Z,y)
P(Z,y)

=
P(X |y)P(Z|y)P(y)

P(Z|y)P(y)
= P(X |y)

Common Effect
The final possible configuration for a triple is the common effect, as shown in the figures below.

CS 188, Spring 2019, Note 6 9

Figure 5: Common Effect with no observations. Figure 6: Common Effect with Y observed.

It expresses the representation:
P(x,y,z) = P(y|x,z)P(x)P(z)

In the configuration shown in Figure 5, X and Z are independent: X ⊥⊥ Z. However, they are not necessarily
independent when conditioned on Y (Figure 6). As an example, suppose all three are binary variables. X
and Z are true and false with equal probability:

P(X = true) = P(X = f alse) = 0.5

P(Z = true) = P(Z = f alse) = 0.5

and Y is determined by whether X and Z have the same value:

P(Y |X ,Z) =

1 if X = Z and Y = true
1 if X 6= Z and Y = f alse
0 else

Then X and Z are independent if Y is unobserved. But if Y is observed, then knowing X will tell us the value
of Z, and vice-versa. So X and Z are not conditionally independent given Y .

Common Effect can be viewed as “opposite” to Causal Chains and Common Cause – X and Z are guaranteed
to be independent if Y is not conditioned on. But when conditioned on Y , X and Z may be dependent
depending on the specific probability values for P(Y | X ,Z)).

This same logic applies when conditioning on descendents of Y in the graph. If one of Y ’s descendent nodes
is observed, as in Figure 7, X and Z are not guaranteed to be independent.

General Case, and D-separation (Optional)
We can use the previous three cases as building blocks to help us answer conditional independence questions
on an arbitrary Bayes’ Net with more than three nodes and two edges. We formulate the problem as follows:

Given a Bayes Net G, two nodes X and Y , and a (possibly empty) set of nodes {Z1, . . .Zk} that represent
observed variables, must the following statement be true: X ⊥⊥ Y |{Z1, . . . Zk}?
D-separation (directed separation) is a property of the structure of the Bayes Net graph that implies this
conditional independence relationship, and generalizes the cases we’ve seen above. If a set of variables
Z1, · · ·Zk d-separates X and Y , then X ⊥⊥ Y | {Z1, · · ·Zk} in all possible distributions that can be encoded by
the Bayes net.

CS 188, Spring 2019, Note 6 10

Figure 7: Common Effect with child observations.

We start with an algorithm that is based on a notion of reachability from node X to node Y . (Note: this
algorithm is not quite correct! We’ll see how to fix it in a moment.)

1. Shade all observed nodes {Z1, . . .Zk} in the graph.

2. If there exists an undirected path from X and Y that is not blocked by a shaded node, X and Y are
“connected”.

3. If X and Y are connected, they’re not conditionally independent given {Z1, . . .Zk}. Otherwise, they
are.

However, this algorithm only works if the Bayes’ Net has no Common Effect structure within the graph, be-
cause if it exists, then two nodes are “reachable” when the Y node in Common Effect is activated (observed).
To adjust for this, we arrive at the following d-separation algorithm:

1. Shade all observed nodes {Z1, . . . ,Zk} in the graph.

2. Enumerate all undirected paths from X to Y .

3. For each path:

(a) Decompose the path into triples (segments of 3 nodes).

(b) If all triples are active, this path is active and d-connects X to Y .

4. If no path d-connects X and Y , then X and Y are d-separated, so they are conditionally independent
given {Z1, . . . ,Zk}

Any path in a graph from X to Y can be decomposed into a set of 3 consecutive nodes and 2 edges - each
of which is called a triple. A triple is active or inactive depending on whether or not the middle node is
observed. If all triples in a path are active, then the path is active and d-connects X to Y , meaning X is
not guaranteed to be conditionally independent of Y given the observed nodes. If all paths from X to Y are
inactive, then X and Y are conditionally independent given the observed nodes.

CS 188, Spring 2019, Note 6 11

Active triples: We can enumerate all possibilities of active and inactive triples using the three canonical
graphs we presented above in Figure 8 and 9.

Figure 8: Active triples Figure 9: Inactive triples

CS 188, Spring 2019, Note 6 12

Examples
Here are some examples of applying the d-separation algorithm:

This graph contains the common effect and causual
chain canonical graphs.

a) R⊥⊥ B – Guaranteed

b) R⊥⊥ B | T – Not guaranteed

c) R⊥⊥ B | T ′ – Not guaranteed

d) R⊥⊥ T ′ | T – Guaranteed

This graph contains combinations of all three canon-
ical graphs (can you list them all?).

a) L⊥⊥ T ′ | T – Guaranteed

b) L⊥⊥ B – Guaranteed

c) L⊥⊥ B | T – Not guaranteed

d) L⊥⊥ B | T ′ – Not guaranteed

e) L⊥⊥ B | T,R – Guaranteed

CS 188, Spring 2019, Note 6 13

This graph contains combinations of all three canon-
ical graphs.

a) T ⊥⊥ D – Not guaranteed

b) T ⊥⊥ D | R – Guaranteed

c) T ⊥⊥ D | R,S – Not guaranteed

Conclusion
To summarize, Bayes’ Nets is a powerful representation of joint probability distributions. Its topological
structure encodes independence and conditional independence relationships, and we can use it to model
arbitrary distributions to perform inference and sampling.

CS 188, Spring 2019, Note 6 14

