
Quick Warm-Up

 Suppose we have a biased coin that comes up heads with some 
unknown probability p; how can we use it to produce random 
bits with probabilities of exactly 0.5 for 0 and 1?
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Quick Warm-Up

 Suppose we have a biased coin that comes up heads with some 
unknown probability p; how can we use it to produce random 
bits with probabilities of exactly 0.5 for 0 and 1?
 Answer (von Neumann):
 Flip coin twice, repeat until the outcomes are different
 HT = 0, TH = 1, each has probability p(1-p)
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Bayes Nets

Part I: Representation

Part II: Exact inference

 Enumeration (always exponential complexity)

 Variable elimination (worst-case exponential 
complexity, often better)

 Inference is NP-hard in general

Part III: Approximate Inference

Later: Learning Bayes nets from data
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Sampling

 Basic idea
 Draw N samples from a sampling distribution S

 Compute an approximate posterior probability

 Show this converges to the true probability P

 Why sample?
 Often very fast to get a decent 

approximate answer

 The algorithms are very simple and 
general (easy to apply to fancy models)

 They require very little memory (O(n))
 They can be applied to large models, 

whereas exact algorithms blow up



Example

 Suppose you have two agent programs A and B for Monopoly
 What is the probability that A wins?
 Method 1: 
 Let s be a sequence of dice rolls and Chance and Community Chest cards
 Given s, the outcome V(s) is determined (1 for a win, 0 for a loss)
 Probability that A wins is
 Problem: infinitely many sequences s !

 Method 2:
 Sample N sequences from P(s) , play N games (maybe 100) 
 Probability that A wins is roughly 1/N ∑i V(si)   i.e., fraction of wins in the sample
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Sampling basics: discrete (categorical) distribution

 To simulate a biased d-sided coin:

 Step 1: Get sample u from uniform 
distribution over [0, 1)
 E.g. random() in python

 Step 2: Convert this sample u into an 
outcome for the given distribution by 
associating each outcome x with a 
P(x)-sized sub-interval of [0,1)

 Example

 If random() returns u = 0.83, 
then the sample is C = blue

 E.g, after sampling 8 times:

C P(C)
red 0.6

green 0.1
blue 0.3

0.0 ≤ u < 0.6, → C=red
0.6 ≤ u < 0.7, → C=green
0.7 ≤ u < 1.0, → C=blue



Sampling in Bayes Nets

 Prior Sampling

 Rejection Sampling

 Likelihood Weighting

 Gibbs Sampling



Prior Sampling



s r w 0.99
¬w 0.01

¬r w 0.90
¬w 0.10

¬s r w 0.90
¬w 0.10

¬r w 0.01
¬w 0.99

Prior Sampling

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

c 0.5
¬c 0.5

c s 0.1
¬s 0.9

¬c s 0.5
¬s 0.5

c r 0.8
¬r 0.2

¬c r 0.2
¬r 0.8

Samples:

c, ¬s,    r, w
¬c,    s, ¬r, w

…

P(W | S,R)

P(S | C) P(R | C)

P(C)



Prior Sampling

 For i=1, 2, …, n (in topological order)

 Sample Xi from P(Xi | parents(Xi))

 Return (x1, x2, …, xn)



Prior Sampling

 This process generates samples with probability:
SPS(x1,…,xn) = 

…i.e. the BN’s joint probability

 Let the number of samples of an event be NPS(x1,…,xn)
 Estimate from N samples is QN(x1,…,xn) = NPS(x1,…,xn)/N
 Then limN→∞ QN(x1,…,xn)  =  limN→∞ NPS(x1,…,xn)/N

= SPS(x1,…,xn) 
= P(x1,…,xn) 

 I.e., the sampling procedure is consistent

∏i P(xi | parents(Xi)) = P(x1,…,xn) 



Example

 We’ll get a bunch of samples from the BN:
c, ¬s,    r,    w
c,    s,    r,    w

¬c,    s,    r, ¬w
c, ¬s,    r,    w

¬c, ¬s, ¬r,    w

 If we want to know P(W)
 We have counts <w:4, ¬w:1>
 Normalize to get P(W) = <w:0.8, ¬w:0.2>
 This will get closer to the true distribution with more samples
 Can estimate anything else, too

 E.g., for query P(C| r, w) use P(C| r, w) = α P(C, r, w)

S R

W

C



Rejection Sampling



c, ¬s,    r,    w
c,    s, ¬r

¬c,    s,    r, ¬w
c, ¬s, ¬r

¬c, ¬s,    r,    w

Rejection Sampling

 A simple modification of prior sampling 
for conditional probabilities

 Let’s say we want P(C| r, w)
 Count the C outcomes, but ignore (reject) 

samples that don’t have R=true, W=true
 This is called rejection sampling
 It is also consistent for conditional 

probabilities (i.e., correct in the limit)

S R

W

C



Rejection Sampling
 Input: evidence e1,..,ek
 For i=1, 2, …, n

 Sample Xi from P(Xi | parents(Xi))

 If xi not consistent with evidence
 Reject: Return, and no sample is generated in this cycle

 Return (x1, x2, …, xn)



Likelihood Weighting



 Idea: fix evidence variables, sample the rest
 Problem: sample distribution not consistent!
 Solution: weight each sample by probability of 

evidence variables given parents

Likelihood Weighting

 Problem with rejection sampling:
 If evidence is unlikely, rejects lots of samples
 Evidence not exploited as you sample
 Consider P(Shape|Color=blue)

Shape ColorShape Color

pyramid,  green
pyramid,  red
sphere,     blue
cube,         red
sphere,      green

pyramid,  blue
pyramid,  blue
sphere,     blue
cube,         blue
sphere,      blue



Likelihood Weighting

c 0.5
¬c 0.5

c s 0.1
¬s 0.9

¬c s 0.5
¬s 0.5

c r 0.8
¬r 0.2

¬c r 0.2
¬r 0.8

s r w 0.99
¬w 0.01

¬r w 0.90
¬w 0.10

¬s r w 0.90
¬w 0.10

¬r w 0.01
¬w 0.99

Samples:

, s,   , w

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

P(W | S,R)

P(S | C) P(R | C)

P(C)

w = 1.0 x 0.1 x 0.99c r



Likelihood Weighting
 Input: evidence e1,..,ek
 w = 1.0
 for i=1, 2, …, n

 if Xi is an evidence variable
 xi = observed valuei for Xi

 Set w = w * P(xi | Parents(Xi))

 else
 Sample xi from P(Xi | Parents(Xi))

 return (x1, x2, …, xn), w



Likelihood Weighting

 Sampling distribution if Z sampled and e fixed evidence

SWS(z,e) = ∏i P(zi | parents(Zi)) 

 Now, samples have weights

w(z,e) = ∏j P(ej | parents(Ej)) 

 Together, weighted sampling distribution is consistent

SWS(z,e) ⋅ w(z,e) =  ∏i P(zi | parents(Zi)) ∏j P(ej | parents(Ej))
= P(z,e) 

Cloudy

R

C

S

W



Likelihood Weighting

 Likelihood weighting is good
 All samples are used
 The values of downstream variables are 

influenced by upstream evidence

 Likelihood weighting still has weaknesses
 The values of upstream variables are unaffected by 

downstream evidence
 E.g., suppose evidence is a video of a traffic accident

 With evidence in k leaf nodes, weights will be O(2-k)
 With high probability, one lucky sample will have much 

larger weight than the others, dominating the result

 We would like each variable to “see” all the 
evidence!



Break Quiz

 Suppose I perform a random walk on a graph, following the arcs 
out of a node uniformly at random. In the infinite limit, what 
fraction of time do I spend at each node? 
 Consider these two examples:
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a

cb

a

cb



Gibbs Sampling



Markov Chain Monte Carlo

 MCMC (Markov chain Monte Carlo) is a family of randomized 
algorithms for approximating some quantity of interest over a 
very large state space
 Markov chain = a sequence of randomly chosen states (“random walk”), 

where each state is chosen conditioned on the previous state
 Monte Carlo = a very expensive city in Monaco with a famous casino
 Monte Carlo = an algorithm (usually based on sampling) that has some 

probability of producing an incorrect answer

 MCMC = wander around for a bit, average what you see

25



Gibbs sampling

 A particular kind of MCMC
 States are complete assignments to all variables
 (Cf local search: closely related to min-conflicts, simulated annealing!)

 Evidence variables remain fixed, other variables change
 To generate the next state, pick a variable and sample a value for it 

conditioned on all the other variables (Cf min-conflicts!)
 Xi’ ~ P(Xi | x1,..,xi-1,xi+1,..,xn)
 Will tend to move towards states of higher probability, but can go down too
 In a Bayes net, P(Xi | x1,..,xi-1,xi+1,..,xn) = P(Xi | markov_blanket(Xi))

 Theorem: Gibbs sampling is consistent*
 Provided all Gibbs distributions are bounded away from 0 and 1 and variable selection is fair 26



Why would anyone do this?

Samples soon begin to 
reflect all the evidence 
in the network

Eventually they are 
being drawn from the 
true posterior!
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How would anyone do this?

 Repeat many times
 Sample a non-evidence variable  Xi from
P(Xi | x1,..,xi-1,xi+1,..,xn) = P(Xi | markov_blanket(Xi))

=   α P(Xi | parents (Xi))  ∏j P(yj | parents(Yj))
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 Step 2: Initialize other variables 
 Randomly

Gibbs Sampling Example: P( S | r)

 Step 1: Fix evidence
 R = true

 Step 3: Repeat
 Choose a non-evidence variable X
 Resample X from P(X | markov_blanket(X))

S r

W

C

S r

W

C

S r
W

C

S r
W

C

S r
W

C

S r
W

C

S r
W

C

S r
W

C

Sample S ~ P(S | c, r, ¬w) Sample C ~ P(C | s, r) Sample W ~ P(W | s, r)



Why does it work? (see AIMA 14.5.2 for details)

 Suppose we run it for a long time and predict the probability of reaching any 
given state at time t: πt(x1,...,xn) or πt(x) 

 Each Gibbs sampling step (pick a variable, resample its value) applied to a 
state x has a probability q(x’ | x) of reaching a next state x’

 So πt+1(x’) = ∑x q(x’ | x) πt(x) or, in matrix/vector form πt+1 = Qπt

 When the process is in equilibrium πt+1 = πt so Qπt = πt

 This has a unique* solution πt = P(x1,...,xn | e1,...,ek)
 So for large enough t the next sample will be drawn from the true posterior
 “Large enough” depends on CPTs in the Bayes net; takes longer if nearly deterministic



Gibbs sampling and MCMC in practice

 The most commonly used method for large Bayes nets
 See, e.g., BUGS, JAGS, STAN, infer.net, BLOG, etc.

 Can be compiled to run very fast
 Eliminate all data structure references, just multiply and sample
 ~100 million samples per second on a laptop

 Can run asynchronously in parallel (one processor per variable)
 Many cognitive scientists suggest the brain runs on MCMC
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Bayes Net Sampling Summary
 Prior Sampling  P

 Likelihood Weighting  P( Q | e)

 Rejection Sampling  P( Q | e )

 Gibbs Sampling  P( Q | e )
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