Quick Warm-Up

Suppose we have a biased coin that comes up heads with some unknown probability p; how can we use it to produce random bits with probabilities of exactly 0.5 for 0 and 1?

Quick Warm-Up

- Suppose we have a biased coin that comes up heads with some unknown probability p; how can we use it to produce random bits with probabilities of exactly 0.5 for 0 and 1?
- Answer (von Neumann):
 - Flip coin twice, repeat until the outcomes are different
 - HT = 0, TH = 1, each has probability p(1-p)

Bayes Nets

- ✓ Part I: Representation
- ✓ Part II: Exact inference
 - ✓ Enumeration (always exponential complexity)
 - ✓ Variable elimination (worst-case exponential complexity, often better)
 - ✓ Inference is NP-hard in general

Part III: Approximate Inference

Later: Learning Bayes nets from data

CS 188: Artificial Intelligence

Bayes Nets: Approximate Inference

Instructors: Sergey Levine and Stuart Russell

University of California, Berkeley

Sampling

Basic idea

- Draw N samples from a sampling distribution S
- Compute an approximate posterior probability
- Show this converges to the true probability P

Why sample?

- Often very fast to get a decent approximate answer
- The algorithms are very simple and general (easy to apply to fancy models)
- They require very little memory (O(n))
- They can be applied to large models, whereas exact algorithms blow up

Example

- Suppose you have two agent programs A and B for Monopoly
- What is the probability that A wins?
 - Method 1:
 - Let s be a sequence of dice rolls and Chance and Community Chest cards
 - Given s, the outcome V(s) is determined (1 for a win, 0 for a loss)
 - Probability that **A** wins is $\sum_{s} P(s) V(s)$
 - Problem: infinitely many sequences s!
 - Method 2:
 - Sample N sequences from P(s), play N games (maybe 100)
 - Probability that **A** wins is roughly $1/N \sum_i V(s_i)$ i.e., fraction of wins in the sample

Sampling basics: discrete (categorical) distribution

- To simulate a biased d-sided coin:
 - Step 1: Get sample u from uniform distribution over [0, 1)
 - E.g. random() in python
 - Step 2: Convert this sample u into an outcome for the given distribution by associating each outcome x with a P(x)-sized sub-interval of [0,1)

Example

С	P(C)
red	0.6
green	0.1
blue	0.3

$$0.0 \le u < 0.6, \rightarrow C=red$$

 $0.6 \le u < 0.7, \rightarrow C=green$
 $0.7 \le u < 1.0, \rightarrow C=blue$

- If random() returns u = 0.83, then the sample is C = blue
- E.g, after sampling 8 times:

Sampling in Bayes Nets

- Prior Sampling
- Rejection Sampling
- Likelihood Weighting
- Gibbs Sampling

- For i=1, 2, ..., n (in topological order)
 - Sample X_i from $P(X_i | parents(X_i))$
- Return $(x_1, x_2, ..., x_n)$

This process generates samples with probability:

$$S_{PS}(x_1,...,x_n) = \prod_i P(x_i \mid parents(X_i)) = P(x_1,...,x_n)$$

...i.e. the BN's joint probability

- Let the number of samples of an event be $N_{PS}(x_1,...,x_n)$
- Estimate from N samples is $Q_N(x_1,...,x_n) = N_{PS}(x_1,...,x_n)/N$

■ Then
$$\lim_{N\to\infty} Q_N(x_1,...,x_n) = \lim_{N\to\infty} N_{PS}(x_1,...,x_n)/N$$

= $S_{PS}(x_1,...,x_n)$
= $P(x_1,...,x_n)$

I.e., the sampling procedure is consistent

Example

We'll get a bunch of samples from the BN:

$$c, \neg s, r, w$$
 c, s, r, w
 $\neg c, s, r, \neg w$
 $c, \neg s, r, w$
 $\neg c, \neg s, \neg r, w$

- If we want to know P(W)
 - We have counts <w:4, ¬w:1>
 - Normalize to get $P(W) = \langle w:0.8, \neg w:0.2 \rangle$
 - This will get closer to the true distribution with more samples
 - Can estimate anything else, too
 - E.g., for query P(C|r, w) use $P(C|r, w) = \alpha P(C, r, w)$

Rejection Sampling

Rejection Sampling

- A simple modification of prior sampling for conditional probabilities
- Let's say we want P(C | r, w)
- Count the C outcomes, but ignore (reject) samples that don't have R=true, W=true
 - This is called *rejection sampling*
 - It is also consistent for conditional probabilities (i.e., correct in the limit)

Rejection Sampling

- Input: evidence $e_1,...,e_k$
- For i=1, 2, ..., n
 - Sample X_i from $P(X_i | parents(X_i))$
 - If x_i not consistent with evidence
 - Reject: Return, and no sample is generated in this cycle
- Return $(x_1, x_2, ..., x_n)$

- Problem with rejection sampling:
 - If evidence is unlikely, rejects lots of samples
 - Evidence not exploited as you sample
 - Consider P(Shape | Color=blue)

pyramid, green
pyramid, red
sphere, blue
cube, red
sphere green

- Idea: fix evidence variables, sample the rest
 - Problem: sample distribution not consistent!
 - Solution: weight each sample by probability of evidence variables given parents

- Input: evidence $e_1,...,e_k$
- w = 1.0
- for i=1, 2, ..., n
 - if X_i is an evidence variable
 - x_i = observed value_i for X_i
 - Set $w = w * P(x_i | Parents(X_i))$
 - else
 - Sample x_i from P(X_i | Parents(X_i))
- return (x₁, x₂, ..., x_n), w

Sampling distribution if Z sampled and e fixed evidence

$$S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i} P(z_i \mid parents(Z_i))$$

Now, samples have weights

$$w(\mathbf{z}, \mathbf{e}) = \prod_{i} P(e_i \mid parents(E_i))$$

Together, weighted sampling distribution is consistent

$$S_{WS}(\mathbf{z}, \mathbf{e}) \cdot w(\mathbf{z}, \mathbf{e}) = \prod_{i} P(z_i \mid parents(Z_i)) \prod_{j} P(e_j \mid parents(E_j))$$

= $P(\mathbf{z}, \mathbf{e})$

- Likelihood weighting is good
 - All samples are used
 - The values of downstream variables are influenced by upstream evidence

- Likelihood weighting still has weaknesses
 - The values of *upstream* variables are unaffected by downstream evidence
 - E.g., suppose evidence is a video of a traffic accident
 - With evidence in k leaf nodes, weights will be $O(2^{-k})$
 - With high probability, one lucky sample will have much larger weight than the others, dominating the result
- We would like each variable to "see" all the evidence!

Break Quiz

- Suppose I perform a random walk on a graph, following the arcs out of a node uniformly at random. In the infinite limit, what fraction of time do I spend at each node?
 - Consider these two examples:

Gibbs Sampling

Gibbs sampling

A particular kind of MCMC

- States are complete assignments to all variables
 - (Cf local search: closely related to min-conflicts, simulated annealing!)
- Evidence variables remain fixed, other variables change
- To generate the next state, pick a variable and sample a value for it conditioned on all the other variables (Cf min-conflicts!)
 - $X_i' \sim P(X_i \mid X_1,...,X_{i-1},X_{i+1},...,X_n)$
 - Will tend to move towards states of higher probability, but can go down too
 - In a Bayes net, $P(X_i \mid x_1,...,x_{i-1},x_{i+1},...,x_n) = P(X_i \mid markov_blanket(X_i))$
- Theorem: Gibbs sampling is consistent*

Why would anyone do this?

Samples soon begin to reflect all the evidence in the network

Eventually they are being drawn from the true posterior!

How would anyone do this?

- Repeat many times
 - Sample a non-evidence variable X_i from

$$P(X_i \mid X_1,...,X_{i-1},X_{i+1},...,X_n) = P(X_i \mid markov_blanket(X_i))$$

= $\alpha P(X_i \mid parents(X_i)) \prod_j P(y_j \mid parents(Y_j))$

Gibbs Sampling Example: P(S | r)

- Step 1: Fix evidence
 - \blacksquare R = true

- Step 2: Initialize other variables
 - Randomly

- Step 3: Repeat
 - Choose a non-evidence variable X
 - Resample X from P(X | markov_blanket(X))

Why does it work? (see AIMA 14.5.2 for details)

- Suppose we run it for a long time and predict the probability of reaching any given state at time t: $\pi_t(x_1,...,x_n)$ or $\pi_t(\underline{\mathbf{x}})$
- Each Gibbs sampling step (pick a variable, resample its value) applied to a state $\underline{\mathbf{x}}$ has a probability $q(\underline{\mathbf{x'}} \mid \underline{\mathbf{x}})$ of reaching a next state $\underline{\mathbf{x'}}$
- So $\pi_{t+1}(\underline{\mathbf{x'}}) = \sum_{\underline{\mathbf{x}}} q(\underline{\mathbf{x'}} \mid \underline{\mathbf{x}}) \, \pi_t(\underline{\mathbf{x}})$ or, in matrix/vector form $\pi_{t+1} = Q\pi_t$
- When the process is in equilibrium $\pi_{t+1} = \pi_t$ so $Q\pi_t = \pi_t$
- This has a unique* solution $\pi_t = P(x_1,...,x_n \mid e_1,...,e_k)$
- So for large enough t the next sample will be drawn from the true posterior
 - "Large enough" depends on CPTs in the Bayes net; takes <u>longer</u> if nearly deterministic

Gibbs sampling and MCMC in practice

- The most commonly used method for large Bayes nets
 - See, e.g., BUGS, JAGS, STAN, infer.net, BLOG, etc.
- Can be <u>compiled</u> to run very fast
 - Eliminate all data structure references, just multiply and sample
 - ~100 million samples per second on a laptop
- Can run asynchronously in parallel (one processor per variable)
- Many cognitive scientists suggest the brain runs on MCMC

Bayes Net Sampling Summary

Prior Sampling P

Rejection Sampling P(Q | e)

Likelihood Weighting P(Q | e)

