
Announcements

▪ Homework 1
▪ Due tonight at 11:59pm

▪ Electronic HW1

▪ Written HW1

▪ Project 1
▪ Due Friday 2/8 at 4:00pm



CS 188: Artificial Intelligence

Adversarial Search and Game Trees

Instructors: Sergey Levine & Stuart Russell
University of California, Berkeley

[Slides adapted from Dan Klein and Pieter Abbeel (ai.berkeley.edu).]



Game Playing State-of-the-Art

▪ Checkers: 1950: First computer player.  1994: First 
computer champion: Chinook ended 40-year-reign 
of human champion Marion Tinsley using complete 
8-piece endgame. 2007: Checkers solved!

▪ Chess: 1997: Deep Blue defeats human champion 
Gary Kasparov in a six-game match.  Deep Blue 
examined 200M positions per second, used very 
sophisticated evaluation and undisclosed methods 
for extending some lines of search up to 40 ply.  
Current programs are even better, if less historic.

▪ Go: Human champions are now starting to be 
challenged by machines. In go, b > 300!  Classic 
programs use pattern knowledge bases, but big 
recent advances use Monte Carlo (randomized) 
expansion methods.



Game Playing State-of-the-Art

▪ Checkers: 1950: First computer player.  1994: First 
computer champion: Chinook ended 40-year-reign 
of human champion Marion Tinsley using complete 
8-piece endgame. 2007: Checkers solved!

▪ Chess: 1997: Deep Blue defeats human champion 
Gary Kasparov in a six-game match.  Deep Blue 
examined 200M positions per second, used very 
sophisticated evaluation and undisclosed methods 
for extending some lines of search up to 40 ply.  
Current programs are even better, if less historic.

▪ Go: 2016: Alpha GO defeats human champion. 
Uses Monte Carlo Tree Search, learned evaluation 
function.

▪ Pacman



Behavior from Computation

[Demo: mystery pacman (L6D1)]



Video of Demo Mystery Pacman



Adversarial Games



▪ Many different kinds of games!

▪ Axes:

▪ Deterministic or stochastic?

▪ One, two, or more players?

▪ Zero sum?

▪ Perfect information (can you see the state)?

▪ Want algorithms for calculating a strategy (policy) which recommends a 
move from each state

Types of Games



Deterministic Games

▪ Many possible formalizations, one is:

▪ States: S (start at s0)

▪ Players: P={1...N} (usually take turns)

▪ Actions: A (may depend on player / state)

▪ Transition Function: SxA→ S

▪ Terminal Test: S → {t,f}

▪ Terminal Utilities: SxP→ R

▪ Solution for a player is a policy: S → A



Zero-Sum Games

▪ Zero-Sum Games
▪ Agents have opposite utilities (values on 

outcomes)

▪ Lets us think of a single value that one 
maximizes and the other minimizes

▪ Adversarial, pure competition

▪ General Games
▪ Agents have independent utilities (values on 

outcomes)

▪ Cooperation, indifference, competition, and 
more are all possible

▪ More later on non-zero-sum games



Adversarial Search



Single-Agent Trees

8

2 0 2 6 4 6… …



Value of a State

Non-Terminal States:

8

2 0 2 6 4 6… …
Terminal States:

Value of a state: 
The best achievable 

outcome (utility) 
from that state



Adversarial Game Trees

-20 -8 -18 -5 -10 +4… … -20 +8



Minimax Values

+8-10-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:



Tic-Tac-Toe Game Tree



Adversarial Search (Minimax)

▪ Deterministic, zero-sum games:

▪ Tic-tac-toe, chess, checkers

▪ One player maximizes result

▪ The other minimizes result

▪ Minimax search:

▪ A state-space search tree

▪ Players alternate turns

▪ Compute each node’s minimax value: 
the best achievable utility against a 
rational (optimal) adversary

8 2 5 6

max

min2 5

5

Terminal values:
part of the game 

Minimax values:
computed recursively



Minimax Implementation

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v



Minimax Implementation (Dispatch)

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is MIN: return min-value(state)

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v



Minimax Example

12 8 5 23 2 144 6



Minimax Properties

Optimal against a perfect player.  Otherwise?

10 10 9 100

max

min

[Demo: min vs exp (L6D2, L6D3)]



Video of Demo Min vs. Exp (Min)



Video of Demo Min vs. Exp (Exp)



Minimax Efficiency

▪ How efficient is minimax?
▪ Just like (exhaustive) DFS

▪ Time: O(bm)

▪ Space: O(bm)

▪ Example: For chess, b  35, m  100
▪ Exact solution is completely infeasible

▪ But, do we need to explore the whole 
tree?



Game Tree Pruning



Minimax Example

12 8 5 23 2 144 6



Minimax Pruning

12 8 5 23 2 14



Alpha-Beta Pruning

▪ General configuration (MIN version)

▪ We’re computing the MIN-VALUE at some node n

▪ We’re looping over n’s children

▪ n’s estimate of the childrens’ min is dropping

▪ Who cares about n’s value?  MAX

▪ Let a be the best value that MAX can get at any choice 

point along the current path from the root

▪ If n becomes worse than a, MAX will avoid it, so we can 

stop considering n’s other children (it’s already bad 

enough that it won’t be played)

▪ MAX version is symmetric

MAX

MIN

MAX

MIN

a

n



Alpha-Beta Implementation

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root



Alpha-Beta Pruning Properties

▪ This pruning has no effect on minimax value computed for the root!

▪ Values of intermediate nodes might be wrong
▪ Important: children of the root may have the wrong value

▪ So the most naïve version won’t let you do action selection

▪ Good child ordering improves effectiveness of pruning

▪ With “perfect ordering”:
▪ Time complexity drops to O(bm/2)

▪ Doubles solvable depth!

▪ Full search of, e.g. chess, is still hopeless…

10 10 0

max

min



Alpha-Beta Quiz



Alpha-Beta Quiz 2



Resource Limits



Resource Limits

▪ Problem: In realistic games, cannot search to leaves!

▪ Solution: Depth-limited search
▪ Instead, search only to a limited depth in the tree
▪ Replace terminal utilities with an evaluation function for 

non-terminal positions

▪ Example:
▪ Suppose we have 100 seconds, can explore 10K nodes / sec
▪ So can check 1M nodes per move
▪ - reaches about depth 8 – decent chess program

▪ Guarantee of optimal play is gone

▪ Use iterative deepening for an anytime algorithm
? ? ? ?

-1 -2 4 9

4

min

max

-2 4



Video of Demo Thrashing (d=2)

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function) (L6D6)]



Why Pacman Starves

▪ A danger of replanning agents!
▪ He knows his score will go up by eating the dot now (west, east)

▪ He knows his score will go up just as much by eating the dot later (east, west)

▪ There are no point-scoring opportunities after eating the dot (within the horizon, two here)

▪ Therefore, waiting seems just as good as eating: he may go east, then back west in the next 
round of replanning!



Video of Demo Thrashing -- Fixed (d=2)

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function) (L6D7)]



Evaluation Functions



Evaluation Functions

▪ Evaluation functions score non-terminals in depth-limited search

▪ Ideal function: returns the actual minimax value of the position
▪ In practice: typically weighted linear sum of features:

▪ e.g.  f1(s) = (num white queens – num black queens), etc.



Evaluation for Pacman

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function), smart ghosts coordinate (L6D6,7,8,10)]



Video of Demo Smart Ghosts (Coordination)



Video of Demo Smart Ghosts (Coordination) – Zoomed In



Depth Matters

▪ Evaluation functions are always 
imperfect

▪ The deeper in the tree the 
evaluation function is buried, the 
less the quality of the evaluation 
function matters

▪ An important example of the 
tradeoff between complexity of 
features and complexity of 
computation

[Demo: depth limited (L6D4, L6D5)]



Video of Demo Limited Depth (2)



Video of Demo Limited Depth (10)



Uncertain Outcomes



Worst-Case vs. Average Case

10 10 9 100

max

min

Idea: Uncertain outcomes controlled by chance, not an adversary!



Expectimax Search

▪ Why wouldn’t we know what the result of an action will be?
▪ Explicit randomness: rolling dice
▪ Unpredictable opponents: the ghosts respond randomly
▪ Actions can fail: when moving a robot, wheels might slip

▪ Values should now reflect average-case (expectimax) 
outcomes, not worst-case (minimax) outcomes

▪ Expectimax search: compute the average score under 
optimal play
▪ Max nodes as in minimax search
▪ Chance nodes are like min nodes but the outcome is uncertain
▪ Calculate their expected utilities
▪ I.e. take weighted average (expectation) of children

▪ Later, we’ll learn how to formalize the underlying uncertain-
result problems as Markov Decision Processes

10 4 5 7

max

chance

10 10 9 100



Expectimax Pseudocode

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

def exp-value(state):
initialize v = 0
for each successor of state:

p = probability(successor)
v += p * value(successor)

return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v



Expectimax Pseudocode

def exp-value(state):
initialize v = 0
for each successor of state:

p = probability(successor)
v += p * value(successor)

return v 5 78 24 -12

1/2
1/3

1/6

v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10



Expectimax Example

12 9 6 03 2 154 6



Expectimax Pruning?

12 93 2



Depth-Limited Expectimax

…

…

492 362 …

400 300

Estimate of true 
expectimax value 

(which would 
require a lot of 

work to compute)



Probabilities



Reminder: Probabilities

▪ A random variable represents an event whose outcome is unknown
▪ A probability distribution is an assignment of weights to outcomes

▪ Example: Traffic on freeway
▪ Random variable: T = whether there’s traffic
▪ Outcomes: T in {none, light, heavy}
▪ Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25

▪ Some laws of probability:
▪ Probabilities are always non-negative
▪ Probabilities over all possible outcomes sum to one

0.25

0.50

0.25



▪ The expected value of a function of a random variable is the 
average, weighted by the probability distribution over 
outcomes

▪ Example: How long to get to the airport?

Reminder: Expectations

0.25 0.50 0.25Probability:

20 min 30 min 60 minTime:
35 minx x x+ +



▪ In expectimax search, we have a probabilistic model 
of how the opponent (or environment) will behave in 
any state
▪ Model could be a simple uniform distribution (roll a die)
▪ Model could be sophisticated and require a great deal of 

computation
▪ We have a chance node for any outcome out of our control: 

opponent or environment
▪ The model might say that adversarial actions are likely!

▪ For now, assume each chance node magically comes 
along with probabilities that specify the distribution 
over its outcomes

What Probabilities to Use?

Having a probabilistic belief about 
another agent’s action does not mean 

that the agent is flipping any coins!



Quiz: Informed Probabilities

▪ Let’s say you know that your opponent is actually running a depth 2 minimax, using the 
result 80% of the time, and moving randomly otherwise

▪ Question: What tree search should you use?  

0.1          0.9

▪ Answer: Expectimax!
▪ To figure out EACH chance node’s probabilities, 

you have to run a simulation of your opponent

▪ This kind of thing gets very slow very quickly

▪ Even worse if you have to simulate your 
opponent simulating you…

▪ … except for minimax, which has the nice 
property that it all collapses into one game tree



Modeling Assumptions



The Dangers of Optimism and Pessimism

Dangerous Optimism
Assuming chance when the world is adversarial

Dangerous Pessimism
Assuming the worst case when it’s not likely



Assumptions vs. Reality

Adversarial Ghost Random Ghost

Minimax
Pacman

Won 5/5

Avg. Score: 483

Won 5/5

Avg. Score: 493

Expectimax
Pacman

Won 1/5

Avg. Score: -303

Won 5/5

Avg. Score: 503

[Demos: world assumptions (L7D3,4,5,6)]

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble
Ghost used depth 2 search with an eval function that seeks Pacman



Assumptions vs. Reality

Adversarial Ghost Random Ghost

Minimax
Pacman

Won 5/5

Avg. Score: 483

Won 5/5

Avg. Score: 493

Expectimax
Pacman

Won 1/5

Avg. Score: -303

Won 5/5

Avg. Score: 503

[Demos: world assumptions (L7D3,4,5,6)]

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble
Ghost used depth 2 search with an eval function that seeks Pacman



Video of Demo World Assumptions
Random Ghost – Expectimax Pacman



Video of Demo World Assumptions
Adversarial Ghost – Minimax Pacman



Video of Demo World Assumptions
Adversarial Ghost – Expectimax Pacman



Video of Demo World Assumptions
Random Ghost – Minimax Pacman



Other Game Types



Mixed Layer Types

▪ E.g. Backgammon

▪ Expectiminimax

▪ Environment is an 
extra “random 
agent” player that 
moves after each 
min/max agent

▪ Each node 
computes the 
appropriate 
combination of its 
children



Example: Backgammon

▪ Dice rolls increase b: 21 possible rolls with 2 dice

▪ Backgammon  20 legal moves

▪ Depth 2 = 20 x (21 x 20)3 = 1.2 x 109

▪ As depth increases, probability of reaching a given 
search node shrinks

▪ So usefulness of search is diminished

▪ So limiting depth is less damaging

▪ But pruning is trickier…

▪ Historic AI: TDGammon uses depth-2 search + very 
good evaluation function + reinforcement learning: 
world-champion level play

▪ 1st AI world champion in any game!

Image: Wikipedia



Multi-Agent Utilities

▪ What if the game is not zero-sum, or has multiple players?

▪ Generalization of minimax:
▪ Terminals have utility tuples
▪ Node values are also utility tuples
▪ Each player maximizes its own component
▪ Can give rise to cooperation and

competition dynamically…

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5


