= Mini-contest 1 (optional)
= Due2/11at 11:59pm

Homework 2

= Due2/11at 11:59pm
= Electronic HW2
= Written HW?2

Project 1

= Due Friday 2/8 at 4:00pm

Announcements

Week 1 (week of 1/28)

Start Time Section
Tues 9:00 a.m. Wheeler 130 (Katie)
12
Tues 11:00 a.m Dwinelle 182 (Mesut) Moffitt 103 (Laura)
35 20
Tues 12:00 p.m Etcheverry 3105 (Ellen) Moffitt 150D (Avi) Soda 310 (Rachel)
8 13
Tues 2:00 p.m. Etcheverry 3105 (Tony) Wheeler 130 (Aditya)
30 50
Tues 3:00 p.m. Barrows 185 (Ronghang/Dequan) Etcheverry 3113 (Murtaza)
15 6
Tues 4:00 p.m. Moffitt 150D (Wilson) Wheeler 224 (Ronghang/Deguan) Soda 405 (Micah)
1 30 15
Wed 9:00 a.m. Dwinelle 242 (Frederik) Wheeler 30 (Michael) Hearst Annex B1 (Austen)
11 10 6
Wed 10:00 a.m, Etcheverry 3113 (Simin)
30
Wed 2:00 p.m. Moffitt 150D (Rishi) Latimer 105 (Henry)
25 15
Wed 3:00 p.m. Hearst Annex B1 (Adam) Evans 3 (Dennis) Etcheverry 3119 (Charles)
25 20 20
Wed 4:00 p.m. Evans 9 (Alex) Wheeler 130 (Jason)

36

63

CS 188: Artificial Intelligence

Expectimax & Markov Decision Processes

Instructors: Sergey Levine and Stuart Russell

University of California, Berkeley

[slides adapted from Dan Klein and Pieter Abbeel http://ai.berkeley.edu.]

Worst-Case vs. Average Case

max

min

10 10 9 100

Expectimax Search

Why wouldn’t we know what the result of an action will be?
= Explicit randomness: rolling dice
= Unpredictable opponents: the ghosts respond randomly
= Actions can fail: when moving a robot, wheels might slip

Values should now reflect average-case (expectimax)
outcomes, not worst-case (minimax) outcomes

Expectimax search: compute the average score under
optimal play
= Max nodes as in minimax search
= Chance nodes are like min nodes but the outcome is uncertain
= Calculate their expected utilities
= |.e.take weighted average (expectation) of children

Later, we’ll learn how to formalize the underlying uncertain-
result problems as Markov Decision Processes

10

10

maXx

chance

100

Expectimax Pseudocode

def value(state):

o

if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

~

J

/def max-value(state):
initialize v = -0
for each successor of state:

return v

-

~

v = max(v, value(successor))

J

<

)

/def exp-value(state): \
initializev=0
for each successor of state:

p = probability(successor)

v += p * value(successor)

k return v /

Expectimax Pseudocode

fdef exp-value(state):
initialize v=0

~

for each successor of state:
p = probability(successor)
v += p * value(successor)

\ return v

1/2

)

1/3

v=(1/2)(8)+(1/3) (24) + (1/6) (-12) = 10

1/6

-12

12

Expectimax Example

Expectimax Pruning?

Depth-Limited Expectimax

E]

]

O B

~

Estimate of true
400! |300 expectimax value

Y ¥\ (which would
require a lot of
work to compute)/

492 362

Probabilities

Reminder: Probabilities

=

)

A random variable represents an event whose outcome is unknown
A probability distribution is an assignment of weights to outcomes

0.25

Example: Traffic on freeway
= Random variable: T = whether there’s traffic
= Qutcomes: Tin {none, light, heavy}
= Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25

Some laws of probability:
= Probabilities are always non-negative
= Probabilities over all possible outcomes sum to one

0.50

0.25

Reminder: Expectations

» The expected value of a function of a random variable is the

average, weighted by the probability distribution over
outcomes

= Example: How long to get to the airport?

Time: 20 min 30 min 60 min

X + X + X 35 min
Probability: 0.25 0.50 0.25

What Probabilities to Use?

" |n expectimax search, we have a probabilistic r/ gde! E)
of how the opponent (or environment) will behx)ﬁ‘?@
any state PN,
y <% _]

= Model could be a simple uniform distribution (roll a d

= Model could be sophisticated and require a great deal of
computation

= We have a chance node for any outcome out of our cont
opponent or environment

= The model might say that adversarial actions are likely!

" For now, assume each chance node magically comes
along with probabilities that specify the distribution
over its outcomes

Having a probabilistic belief about
another agent’s action does not mean
that the agent is flipping any coins!

Quiz: Informed Probabilities

= Let’s say you know that your opponent is actually running a depth 2 minimax, using the
result 80% of the time, and moving randomly otherwise

= Question: What tree search should you use?

= Answer: Expectimax!

= To figure out EACH chance node’s probabilities,

you have to run a simulation of your opponent

0.1 0.9 = This kind of thing gets very slow very quickly

= Even worse if you have to simulate your

/\A /\A opponent simulating you...

= .. except for minimax, which has the nice
property that it all collapses into one game tree

Other Game Types

= E.g. Backgammon
= Expectiminimax

= Environment is an
extra “random
agent” player that
moves after each
min/max agent

= Each node
computes the
appropriate
combination of its
children

Mixed Layer Types

Example: Backgammon

= Dice rolls increase b: 21 possible rolls with 2 dice

= Backgammon = 20 legal moves
" Depth2=20x(21x20)3=1.2x10°

= As depth increases, probability of reaching a given
search node shrinks
= So usefulness of search is diminished

= So limiting depth is less damaging

= But pruning is trickier...

= Historic Al: TDGammon uses depth-2 search + very
good evaluation function + reinforcement learning:

world-champion level play

= 15t Al world champion in any game!
Image: Wikipedia

Multi-Agent Utilities

= What if the game is not zero-sum, or has multiple players?

= Generalization of minimax:
= Terminals have utility tuples
= Node values are also utility tuples
= Each player maximizes its own component
= Can give rise to cooperation and
competition dynamically...

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5

Non-Deterministic Search

max

chance

Example: Grid World

A maze-like problem
= The agent livesin a grid
= Walls block the agent’s path

Noisy movement: actions do not always go as planned

= 80% of the time, the action North takes the agent North
(if there is no wall there)

= 10% of the time, North takes the agent West; 10% East

= |f thereis a wall in the direction the agent would have
been taken, the agent stays put

The agent receives rewards each time step
= Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World Stochastic Grid World

Markov Decision Processes

An MDP is defined by:

m Asetofstatess €S
m Asetofactionsace A
= A transition function T(s, a, s’)

= Probability that a from sleadsto s’, i.e., P(s’| s, a)
= Also called the model or the dynamics

A reward function R(s, a, s’)
= Sometimes just R(s) or R(s’)

A start state

Maybe a terminal state

MDPs are non-deterministic search problems
= One way to solve them is with expectimax search
= We'll have a new tool soon

[Demo — gridworld manual intro (L8D1)]

Video of Demo Gridworld Manual Intro

What is Markov about MDPs?

= “Markov” generally means that given the present state, the
future and the past are independent

= For Markov decision processes, “Markov” means action
outcomes depend only on the current state

P(St—i—l = 3”575 — StaAt — Ay, St—1 = 8t—1,At—1, ...5 = So)

Andrey Markov
P(St_|_1 — S”St = Sy, A, = CLt) (1856-1922)

= This is just like search, where the successor function could only
depend on the current state (not the history)

Policies

In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

For MDPs, we want an optimal policy t*: S - A

= A policy t gives an action for each state

= An optimal policy is one that maximizes
expected utility if followed

= An explicit policy defines a reflex agent

Expectimax didn’t compute entire policies

= |t computed the action for a single state only

Optimal Policies

Example: Racing

Example: Racing

A robot car wants to travel far, quickly
Three states: Cool, Warm, Overheated
Two actions: Slow, Fast

Going faster gets double reward 0-5

Slow

Overheated

Racing Search Tree

MDP Search Trees

= Each MDP state projects an expectimax-like search tree

(s,a,s’) called a transition
T(s,a,s’) = P(s’'|s,a)

R(s,a,s) '?5\

Utilities of Sequences

Utilities of Sequences
= What preferences should an agent have over reward sequences?
= Moreorless? [1,2,2] or [2,3,4]

= Now or later? [0, 0O, 1] or [1,0, 0]

Discounting

" [t's reasonable to maximize the sum of rewards
" |t’s also reasonable to prefer rewards now to rewards later

= One solution: values of rewards decay exponentially

w{
© @9

1 gl v°

Worth Now Worth Next Step Worth In Two Steps

Discounting

= How to discount?

= Each time we descend a level, we
multiply in the discount once

= Why discount?

= Sooner rewards probably do have
higher utility than later rewards

= Also helps our algorithms converge

= Example: discount of 0.5
= U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
= U([1,2,3]) < U([3,2,1])

Stationary Preferences

* Theorem: if we assume stationary preferences: :

¥ @

ai,as,...] = |b1,ba,..] @l \2
; v

ray, a9, ... > [r,bi,ba, ..]

" Then: there are only two ways to define utilities
= Additive utility: U([ro,71,72,...]) =m0 +r1+rm+---

= Discounted utility: U([rg,r1,72,...]) =19 +r1 +7%ro---

Quiz: Discounting

Given: 10 1

a b G d =
= Actions: East, West, and Exit (only available in exit states a, €)

= Transitions: deterministic

Quiz 1: For y =1, what is the optimal policy? 10

Quiz 2: For y=0.1, what is the optimal policy? 10

Quiz 3: For which y are West and East equally good when in state d?

Infinite Utilities?!

" Problem: What if the game lasts forever? Do we get infinite rewards?

= Solutions:
= Finite horizon: (similar to depth-limited search)

= Terminate episodes after a fixed T steps (e.g. life)
= Gives nonstationary policies (mr depends on time left)

= Discounting:use0<y<1

Ulros--.rse]) = S 4tre < Rmax/(1)
t=0

= Smaller y means smaller “horizon” — shorter term focus

= Absorbing state: guarantee that for every policy, a terminal state will eventually
be reached (like “overheated” for racing)

Recap: Defining MDPs

" Markov decision processes:
= Set of states S
= Start state s,
= Set of actions A
" Transitions P(s’|s,a) (or T(s,a,s’)))
= Rewards R(s,a,s’) (and discount 7) 7 8,3,8

"= MDP quantities so far:
= Policy = Choice of action for each state
= Utility = sum of (discounted) rewards

Solving MDPs

Optimal Quantities

"= The value (utility) of a state s:

V7(s) = expected utility starting in s and A 553
acting optimally state

ol (s,a)isa
" The value (utility) of a g-state (s,a): v g-state
Q’(s,a) = expected utility starting out A N
having taken action a from state s and 58,5 (s,a,8") is a
(thereafter) acting optimally / g transition

" The optimal policy:
n"(s) = optimal action from state s

[Demo — gridworld values (L8D4)]

Snapshot of Demo — Gridworld V Values

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Snapshot of Demo — Gridworld Q Values

MKI

WWWW ‘

Values of States

= Fundamental operation: compute the (expectimax) value of a state
= Expected utility under optimal action
= Average sum of (discounted) rewards
" This is just what expectimax computed!

= Recursive definition of value: ,
V*(s) = maxQ*(s, a)

Q*(s,a) => T(s,a, s {R(s, a,s’) + *yV*(s’)]

V*i(s) = mngT(s, a,s’) {R(S,CL, s + ’)/V*(S/)}

S

Racing Search Tree

Racing Search Tree

mmm

N EREEN AR R

A

VAT TMREERI TR CERTEORE TN T

Racing Search Tree

We're doing way too much
work with expectimax!

Problem: States are repeated

= |dea: Only compute needed
guantities once

Problem: Tree goes on forever fl fl m fl fl m fl m

= |dea: Do a depth-limited L) IR ER EREEEERN

computation, but with increasing
= Note: deep parts of the tree

eventually don’t matterify<1 THTTREETLLL TR TR LL THITRLLL

Time-Limited Values

= Key idea: time-limited values

= Define V,(s) to be the optimal value of s if the game ends
in k more time steps

= Equivalently, it’'s what a depth-k expectimax would give from s

& &

1

[Demo — time-limited values (L8D6)]

VALUES AFTER O ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

0.72) 1.00

VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

1.00

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=4

Cridworld Display

VALUES AFTER 4 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=5

Cridworld Display

Y
.H

Y
“u

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=6

Cridworld Display

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=7

Cridworld Display

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=8

Cridworld Display

VALUES AFTER 8 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=9

Cridworld Display

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=10

Cridworld Display

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=11

Cridworld Display

VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Computing Time-Limited Values

\
e
Q-

e et e e e b

VO || O Y | VO | O O Y | VO O i

THITRIN IR LI nh\h“h‘i“ THITRLLL

Value lteration

Value lteration

Start with V,(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V (s) values, do one step of expectimax from each state:

Vit1(s) maaxZT(s, a,s’) {R(s,a, s + ’YV]{(S,)}

S

Repeat until convergence 5,38

Complexity of each iteration: O(S?A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

Example: Value Iteration

Overheated

Assume no discount!

" [v 0 J Viaa(5) € max S Ts,, 1) [R(s,a,) 4+ V()]

S

Convergence*

How do we know the V| vectors are going to converge?

Vi(s) Vit1(s)

Case 1: If the tree has maximum depth M, then V,, holds
the actual untruncated values

Case 2: If the discount is less than 1

= Sketch: For any state V, and V,,, can be viewed as depth
k+1 expectimax results in nearly identical search trees

= The difference is that on the bottom layer, V,,, has actual
rewards while V, has zeros

= That last layer is at best all Ry,

" |tisatworst Ry, / \ /

= But everything is discounted by yk that far out
= SoV,andV,,, are at most y* max|R| different
= So as kincreases, the values converge

Next Time: Policy-Based Methods

