
Announcements

▪ Homework 2
▪ Due 2/11 at 11:59pm

▪ Electronic HW2

▪ Written HW2

▪ Project 1
▪ Due Friday 2/8 at 4:00pm

▪ Mini-contest 1 (optional)
▪ Due 2/11 at 11:59pm



CS 188: Artificial Intelligence
Expectimax & Markov Decision Processes

Instructors: Sergey Levine and Stuart Russell

University of California, Berkeley
[slides adapted from Dan Klein and Pieter Abbeel http://ai.berkeley.edu.]



Worst-Case vs. Average Case
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Expectimax Search

▪ Why wouldn’t we know what the result of an action will be?
▪ Explicit randomness: rolling dice
▪ Unpredictable opponents: the ghosts respond randomly
▪ Actions can fail: when moving a robot, wheels might slip

▪ Values should now reflect average-case (expectimax) 
outcomes, not worst-case (minimax) outcomes

▪ Expectimax search: compute the average score under 
optimal play
▪ Max nodes as in minimax search
▪ Chance nodes are like min nodes but the outcome is uncertain
▪ Calculate their expected utilities
▪ I.e. take weighted average (expectation) of children

▪ Later, we’ll learn how to formalize the underlying uncertain-
result problems as Markov Decision Processes
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Expectimax Pseudocode

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

def exp-value(state):
initialize v = 0
for each successor of state:

p = probability(successor)
v += p * value(successor)

return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v



Expectimax Pseudocode

def exp-value(state):
initialize v = 0
for each successor of state:

p = probability(successor)
v += p * value(successor)

return v 5 78 24 -12

1/2
1/3

1/6

v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10



Expectimax Example
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Expectimax Pruning?
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Depth-Limited Expectimax

…

…

492 362 …

400 300

Estimate of true 
expectimax value 

(which would 
require a lot of 

work to compute)



Probabilities



Reminder: Probabilities

▪ A random variable represents an event whose outcome is unknown
▪ A probability distribution is an assignment of weights to outcomes

▪ Example: Traffic on freeway
▪ Random variable: T = whether there’s traffic
▪ Outcomes: T in {none, light, heavy}
▪ Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25

▪ Some laws of probability:
▪ Probabilities are always non-negative
▪ Probabilities over all possible outcomes sum to one

0.25

0.50

0.25



▪ The expected value of a function of a random variable is the 
average, weighted by the probability distribution over 
outcomes

▪ Example: How long to get to the airport?

Reminder: Expectations

0.25 0.50 0.25Probability:

20 min 30 min 60 minTime:
35 minx x x+ +



▪ In expectimax search, we have a probabilistic model 
of how the opponent (or environment) will behave in 
any state
▪ Model could be a simple uniform distribution (roll a die)
▪ Model could be sophisticated and require a great deal of 

computation
▪ We have a chance node for any outcome out of our control: 

opponent or environment
▪ The model might say that adversarial actions are likely!

▪ For now, assume each chance node magically comes 
along with probabilities that specify the distribution 
over its outcomes

What Probabilities to Use?

Having a probabilistic belief about 
another agent’s action does not mean 

that the agent is flipping any coins!



Quiz: Informed Probabilities

▪ Let’s say you know that your opponent is actually running a depth 2 minimax, using the 
result 80% of the time, and moving randomly otherwise

▪ Question: What tree search should you use?  

0.1          0.9

▪ Answer: Expectimax!
▪ To figure out EACH chance node’s probabilities, 

you have to run a simulation of your opponent

▪ This kind of thing gets very slow very quickly

▪ Even worse if you have to simulate your 
opponent simulating you…

▪ … except for minimax, which has the nice 
property that it all collapses into one game tree



Other Game Types



Mixed Layer Types

▪ E.g. Backgammon

▪ Expectiminimax

▪ Environment is an 
extra “random 
agent” player that 
moves after each 
min/max agent

▪ Each node 
computes the 
appropriate 
combination of its 
children



Example: Backgammon

▪ Dice rolls increase b: 21 possible rolls with 2 dice

▪ Backgammon  20 legal moves

▪ Depth 2 = 20 x (21 x 20)3 = 1.2 x 109

▪ As depth increases, probability of reaching a given 
search node shrinks

▪ So usefulness of search is diminished

▪ So limiting depth is less damaging

▪ But pruning is trickier…

▪ Historic AI: TDGammon uses depth-2 search + very 
good evaluation function + reinforcement learning: 
world-champion level play

▪ 1st AI world champion in any game!

Image: Wikipedia



Multi-Agent Utilities

▪ What if the game is not zero-sum, or has multiple players?

▪ Generalization of minimax:
▪ Terminals have utility tuples
▪ Node values are also utility tuples
▪ Each player maximizes its own component
▪ Can give rise to cooperation and

competition dynamically…

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5



Non-Deterministic Search
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Example: Grid World

▪ A maze-like problem

▪ The agent lives in a grid

▪ Walls block the agent’s path

▪ Noisy movement: actions do not always go as planned

▪ 80% of the time, the action North takes the agent North 
(if there is no wall there)

▪ 10% of the time, North takes the agent West; 10% East

▪ If there is a wall in the direction the agent would have 
been taken, the agent stays put

▪ The agent receives rewards each time step

▪ Small “living” reward each step (can be negative)

▪ Big rewards come at the end (good or bad)

▪ Goal: maximize sum of rewards



Grid World Actions

Deterministic Grid World Stochastic Grid World



Markov Decision Processes

▪ An MDP is defined by:
▪ A set of states s  S
▪ A set of actions a  A
▪ A transition function T(s, a, s’)

▪ Probability that a from s leads to s’, i.e., P(s’| s, a)
▪ Also called the model or the dynamics

▪ A reward function R(s, a, s’) 
▪ Sometimes just R(s) or R(s’)

▪ A start state
▪ Maybe a terminal state

▪ MDPs are non-deterministic search problems
▪ One way to solve them is with expectimax search
▪ We’ll have a new tool soon

[Demo – gridworld manual intro (L8D1)]



Video of Demo Gridworld Manual Intro



What is Markov about MDPs?

▪ “Markov” generally means that given the present state, the 
future and the past are independent

▪ For Markov decision processes, “Markov” means action 
outcomes depend only on the current state

▪ This is just like search, where the successor function could only 
depend on the current state (not the history)

Andrey Markov 
(1856-1922)



Policies

▪ In deterministic single-agent search problems, 
we wanted an optimal plan, or sequence of 
actions, from start to a goal

▪ For MDPs, we want an optimal policy *: S → A
▪ A policy  gives an action for each state

▪ An optimal policy is one that maximizes        
expected utility if followed

▪ An explicit policy defines a reflex agent

▪ Expectimax didn’t compute entire policies
▪ It computed the action for a single state only



Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01



Example: Racing



Example: Racing

▪ A robot car wants to travel far, quickly

▪ Three states: Cool, Warm, Overheated

▪ Two actions: Slow, Fast

▪ Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5 

0.5 

0.5 

0.5 

1.0 
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+1 

+1 

+1 

+2 

+2 
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Racing Search Tree



MDP Search Trees

▪ Each MDP state projects an expectimax-like search tree

a

s

s’

s, a

(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

s,a,s’

s is a state

(s, a) is a 

q-state



Utilities of Sequences



Utilities of Sequences

▪ What preferences should an agent have over reward sequences?

▪ More or less?

▪ Now or later?

[1, 2, 2] [2, 3, 4]or

[0, 0, 1] [1, 0, 0]or



Discounting

▪ It’s reasonable to maximize the sum of rewards

▪ It’s also reasonable to prefer rewards now to rewards later

▪ One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps



Discounting

▪ How to discount?
▪ Each time we descend a level, we 

multiply in the discount once

▪ Why discount?
▪ Sooner rewards probably do have 

higher utility than later rewards

▪ Also helps our algorithms converge

▪ Example: discount of 0.5
▪ U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3

▪ U([1,2,3]) < U([3,2,1])



Stationary Preferences

▪ Theorem: if we assume stationary preferences:

▪ Then: there are only two ways to define utilities

▪ Additive utility:

▪ Discounted utility:



Quiz: Discounting

▪ Given:

▪ Actions: East, West, and Exit (only available in exit states a, e)

▪ Transitions: deterministic

▪ Quiz 1: For  = 1, what is the optimal policy?

▪ Quiz 2: For  = 0.1, what is the optimal policy?

▪ Quiz 3: For which  are West and East equally good when in state d?



Infinite Utilities?!

▪ Problem: What if the game lasts forever?  Do we get infinite rewards?

▪ Solutions:

▪ Finite horizon: (similar to depth-limited search)
▪ Terminate episodes after a fixed T steps (e.g. life)

▪ Gives nonstationary policies ( depends on time left)

▪ Discounting: use 0 <  < 1

▪ Smaller  means smaller “horizon” – shorter term focus

▪ Absorbing state: guarantee that for every policy, a terminal state will eventually 
be reached (like “overheated” for racing)



Recap: Defining MDPs

▪ Markov decision processes:
▪ Set of states S
▪ Start state s0

▪ Set of actions A
▪ Transitions P(s’|s,a) (or T(s,a,s’))
▪ Rewards R(s,a,s’) (and discount )

▪ MDP quantities so far:
▪ Policy = Choice of action for each state
▪ Utility = sum of (discounted) rewards

a

s

s, a

s,a,s’

s’



Solving MDPs



Optimal Quantities

▪ The value (utility) of a state s:
V*(s) = expected utility starting in s and 

acting optimally

▪ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out 

having taken action a from state s and 
(thereafter) acting optimally

▪ The optimal policy:
*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a 
transition

s,a,s’

s is a 
state

(s, a) is a 
q-state

[Demo – gridworld values (L8D4)]



Snapshot of Demo – Gridworld V Values

Noise = 0.2
Discount = 0.9
Living reward = 0



Snapshot of Demo – Gridworld Q Values

Noise = 0.2
Discount = 0.9
Living reward = 0



Values of States

▪ Fundamental operation: compute the (expectimax) value of a state

▪ Expected utility under optimal action

▪ Average sum of (discounted) rewards

▪ This is just what expectimax computed!

▪ Recursive definition of value:

a

s

s, a

s,a,s’

s’



Racing Search Tree



Racing Search Tree



Racing Search Tree

▪ We’re doing way too much 
work with expectimax!

▪ Problem: States are repeated 
▪ Idea: Only compute needed 

quantities once

▪ Problem: Tree goes on forever
▪ Idea: Do a depth-limited 

computation, but with increasing 
depths until change is small

▪ Note: deep parts of the tree 
eventually don’t matter if γ < 1



Time-Limited Values

▪ Key idea: time-limited values

▪ Define Vk(s) to be the optimal value of s if the game ends 
in k more time steps
▪ Equivalently, it’s what a depth-k expectimax would give from s

[Demo – time-limited values (L8D6)]



k=0

Noise = 0.2
Discount = 0.9
Living reward = 0



k=1

Noise = 0.2
Discount = 0.9
Living reward = 0



k=2

Noise = 0.2
Discount = 0.9
Living reward = 0



k=3

Noise = 0.2
Discount = 0.9
Living reward = 0



k=4

Noise = 0.2
Discount = 0.9
Living reward = 0



k=5

Noise = 0.2
Discount = 0.9
Living reward = 0



k=6

Noise = 0.2
Discount = 0.9
Living reward = 0



k=7

Noise = 0.2
Discount = 0.9
Living reward = 0



k=8

Noise = 0.2
Discount = 0.9
Living reward = 0



k=9

Noise = 0.2
Discount = 0.9
Living reward = 0



k=10

Noise = 0.2
Discount = 0.9
Living reward = 0



k=11

Noise = 0.2
Discount = 0.9
Living reward = 0



k=12

Noise = 0.2
Discount = 0.9
Living reward = 0



k=100

Noise = 0.2
Discount = 0.9
Living reward = 0



Computing Time-Limited Values



Value Iteration



Value Iteration

▪ Start with V0(s) = 0: no time steps left means an expected reward sum of zero

▪ Given vector of Vk(s) values, do one step of expectimax from each state:

▪ Repeat until convergence

▪ Complexity of each iteration: O(S2A)

▪ Theorem: will converge to unique optimal values
▪ Basic idea: approximations get refined towards optimal values
▪ Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)



Example: Value Iteration

0             0             0

2             1             0

3.5          2.5          0

Assume no discount!



Convergence*

▪ How do we know the Vk vectors are going to converge?

▪ Case 1: If the tree has maximum depth M, then VM holds 
the actual untruncated values

▪ Case 2: If the discount is less than 1

▪ Sketch: For any state Vk and Vk+1 can be viewed as depth 
k+1 expectimax results in nearly identical search trees

▪ The difference is that on the bottom layer, Vk+1 has actual 
rewards while Vk has zeros

▪ That last layer is at best all RMAX

▪ It is at worst RMIN

▪ But everything is discounted by γk that far out

▪ So Vk and Vk+1 are at most γk max|R| different

▪ So as k increases, the values converge



Next Time: Policy-Based Methods


