Announcements

- Homework 2
 - Due **2/11** at 11:59pm
 - Electronic HW2
 - Written HW2
- Project 1
 - Due Friday 2/8 at 4:00pm
- Mini-contest 1 (optional)
 - Due 2/11 at 11:59pm

Week 1 (week o	of 1/28)				
Start Time	Section				
Tues 9:00 a.m.	Wheeler 130 (Katie)				
		1	2		
Tues 11:00 a.m.	Dwinelle 182 (Mes	ut)	N	Ioffitt 103 (Laura)	
	35			20	
Tues 12:00 p.m.	Etcheverry 3105 (Ellen)	Moffitt 1	50D (Avi)	Soda 310 (Rachel)	
	8	1	3		
Tues 2:00 p.m.	Etcheverry 3105 (To	ony)	W	neeler 130 (Aditya)	
	30			50	
Tues 3:00 p.m.	Barrows 185 (Ronghang,	/Dequan)	Etche	everry 3113 (Murtaza)	
	15			6	
Tues 4:00 p.m.	Moffitt 150D (Wilson)	Wheeler 224 (Ro	nghang/Dequan)	Soda 405 (Micah)	
	1		30	15	
Wed 9:00 a.m.	Dwinelle 242 (Frederik)	Wheeler 30) (Michael)	Hearst Annex B1 (Austen)	
	11	1	0	б	
Wed 10:00 a.m.		Etcheverry 3	3113 (Simin)		
		3	0		
Wed 2:00 p.m.	Moffitt 150D (Rist	ni)	La	timer 105 (Henry)	
	25			15	
Wed 3:00 p.m.	Hearst Annex B1 (Adam)	Evans 3	(Dennis)	Etcheverry 3119 (Charles)	
	25	20		20	
Wed 4:00 p.m.	Evans 9 (Alex)		W	neeler 130 (Jason)	
	36			63	

CS 188: Artificial Intelligence

Expectimax & Markov Decision Processes

Instructors: Sergey Levine and Stuart Russell

University of California, Berkeley

[slides adapted from Dan Klein and Pieter Abbeel http://ai.berkeley.edu.]

Worst-Case vs. Average Case

Expectimax Search

Why wouldn't we know what the result of an action will be?

- Explicit randomness: rolling dice
- Unpredictable opponents: the ghosts respond randomly
- Actions can fail: when moving a robot, wheels might slip
- Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax) outcomes
- Expectimax search: compute the average score under optimal play
 - Max nodes as in minimax search
 - Chance nodes are like min nodes but the outcome is uncertain
 - Calculate their expected utilities
 - I.e. take weighted average (expectation) of children
- Later, we'll learn how to formalize the underlying uncertainresult problems as Markov Decision Processes

Expectimax Pseudocode

def value(state):

if the state is a terminal state: return the state's utility if the next agent is MAX: return max-value(state) if the next agent is EXP: return exp-value(state)

def exp-value(state): initialize v = 0 for each successor of state: p = probability(successor) v += p * value(successor) return v

Expectimax Pseudocode

v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10

Expectimax Example

Expectimax Pruning?

Depth-Limited Expectimax

Probabilities

Reminder: Probabilities

- A random variable represents an event whose outcome is unknown
- A probability distribution is an assignment of weights to outcomes
- Example: Traffic on freeway
 - Random variable: T = whether there's traffic
 - Outcomes: T in {none, light, heavy}
 - Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25
- Some laws of probability:
 - Probabilities are always non-negative
 - Probabilities over all possible outcomes sum to one

Reminder: Expectations

Ч С

- The expected value of a function of a random variable is the average, weighted by the probability distribution over outcomes
- Example: How long to get to the airport?

What Probabilities to Use?

- In expectimax search, we have a probabilistic note of how the opponent (or environment) will behave any state
 - Model could be a simple uniform distribution (roll a die)
 - Model could be sophisticated and require a great deal of computation
 - We have a chance node for any outcome out of our contories opponent or environment
 - The model might say that adversarial actions are likely!
- For now, assume each chance node magically comes along with probabilities that specify the distribution over its outcomes

Having a probabilistic belief about another agent's action does not mean that the agent is flipping any coins!

 $\mathbf{\Sigma}$

00

 $\mathbf{\Sigma}$

Quiz: Informed Probabilities

- Let's say you know that your opponent is actually running a depth 2 minimax, using the result 80% of the time, and moving randomly otherwise
- Question: What tree search should you use?

- Answer: Expectimax!
 - To figure out EACH chance node's probabilities, you have to run a simulation of your opponent
 - This kind of thing gets very slow very quickly
 - Even worse if you have to simulate your opponent simulating you...
 - ... except for minimax, which has the nice property that it all collapses into one game tree

Other Game Types

Mixed Layer Types

- E.g. Backgammon
- Expectiminimax
 - Environment is an extra "random agent" player that moves after each min/max agent
 - Each node computes the appropriate combination of its children

Example: Backgammon

- Dice rolls increase b: 21 possible rolls with 2 dice
 - Backgammon ≈ 20 legal moves
 - Depth 2 = 20 x (21 x 20)³ = 1.2 x 10⁹
- As depth increases, probability of reaching a given search node shrinks
 - So usefulness of search is diminished
 - So limiting depth is less damaging
 - But pruning is trickier...
- Historic AI: TDGammon uses depth-2 search + very good evaluation function + reinforcement learning: world-champion level play
- 1st AI world champion in any game!

Multi-Agent Utilities

• What if the game is not zero-sum, or has multiple players?

1,6,6

7,1,2

6,1,2

7,2,1

<mark>5,1</mark>,7

1,5,2

<mark>5,2</mark>,5

7,7,1

- Generalization of minimax:
 - Terminals have utility tuples
 - Node values are also utility tuples
 - Each player maximizes its own component
 - Can give rise to cooperation and competition dynamically...

Non-Deterministic Search

Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World

Stochastic Grid World

Markov Decision Processes

- An MDP is defined by:
 - A set of states s ∈ S
 - A set of actions $a \in A$
 - A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s' | s, a)
 - Also called the model or the dynamics
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - A start state
 - Maybe a terminal state
- MDPs are non-deterministic search problems
 - One way to solve them is with expectimax search
 - We'll have a new tool soon

Video of Demo Gridworld Manual Intro

What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots, S_0 = s_0)$$

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

 This is just like search, where the successor function could only depend on the current state (not the history)

Andrey Markov (1856-1922)

Policies

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy $\pi^*: S \rightarrow A$
 - A policy π gives an action for each state
 - An optimal policy is one that maximizes expected utility if followed
 - An explicit policy defines a reflex agent
- Expectimax didn't compute entire policies
 - It computed the action for a single state only

Optimal Policies

R(s) = -0.01

R(s) = -0.03

Example: Racing

Example: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: Slow, Fast

MDP Search Trees

Utilities of Sequences

Utilities of Sequences

- What preferences should an agent have over reward sequences?
- More or less? [1, 2, 2] or [2, 3, 4]
- Now or later? [0, 0, 1] or [1, 0, 0]

Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

Discounting

- How to discount?
 - Each time we descend a level, we multiply in the discount once
- Why discount?
 - Sooner rewards probably do have higher utility than later rewards
 - Also helps our algorithms converge
- Example: discount of 0.5
 - U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
 - U([1,2,3]) < U([3,2,1])</p>

Stationary Preferences

Theorem: if we assume stationary preferences:

$$[a_1, a_2, \ldots] \succ [b_1, b_2, \ldots]$$

$$(r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots]$$

- Then: there are only two ways to define utilities
 - Additive utility: $U([r_0, r_1, r_2, ...]) = r_0 + r_1 + r_2 + \cdots$
 - Discounted utility: $U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$

Quiz: Discounting

- Actions: East, West, and Exit (only available in exit states a, e)
- Transitions: deterministic
- Quiz 1: For $\gamma = 1$, what is the optimal policy?

• Quiz 2: For γ = 0.1, what is the optimal policy?

Quiz 3: For which γ are West and East equally good when in state d?

Infinite Utilities?!

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (π depends on time left)
 - Discounting: use $0 < \gamma < 1$

$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\max}/(1-\gamma)$$

- Smaller γ means smaller "horizon" shorter term focus
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)

Recap: Defining MDPs

- Markov decision processes:
 - Set of states S
 - Start state s₀
 - Set of actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)
- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards

Solving MDPs

Optimal Quantities

- The value (utility) of a state s:
 - V^{*}(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 - Q^{*}(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy:
 π^{*}(s) = optimal action from state s

Snapshot of Demo – Gridworld V Values

0 0	Gridworld Display				
	0.64 ▶	0.74 >	0.85 •	1.00	
	• 0.57		• 0.57	-1.00	
	• 0.49	∢ 0.43	▲ 0.48	∢ 0.28	
	VALUES	S AFTER 1	LOO ITERA	ATIONS	

Snapshot of Demo – Gridworld Q Values

Values of States

- Fundamental operation: compute the (expectimax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed!
- Recursive definition of value:

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$
$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$
$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

- We're doing way too much work with expectimax!
- Problem: States are repeated
 - Idea: Only compute needed quantities once
- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don't matter if γ < 1

Time-Limited Values

- Key idea: time-limited values
- Define V_k(s) to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it's what a depth-k expectimax would give from s

0 0	Gridworl	d Display		
		•		
0.00	0.00	0.00	0.00	
^		^		
0.00		0.00	0.00	
	^		^	
0.00	0.00	0.00	0.00	
VALUES AFTER O TTERATIONS				

0	0	Gridworl	d Display		
	0.00	0.00	0.00 →	1.00	
	0.00		∢ 0.00	-1.00	
			^		
	0.00	0.00	0.00	0.00	
				-	
	VALUES AFTER 1 ITERATIONS				

Gridworld Display				
• 0.00	0.00)	0.72)	1.00	
• 0.00		• 0.00	-1.00	
•	• 0.00	•	0.00	
VALUES AFTER 2 ITERATIONS				

k=3

0	0	Gridworl	d Display	
	0.00 >	0.52 ▸	0.78 →	1.00
	• 0.00		• 0.43	-1.00
	• 0.00	• 0.00	• 0.00	0.00
	VALUE	S AFTER	3 ITERA	LIONS

k=4

0 0	Gridworl	d Display		
0.37 ▸	0.66)	0.83)	1.00	
•		• 0.51	-1.00	
•	0.00 →	• 0.31	∢ 0.00	
VALUES AFTER 4 ITERATIONS				

00	○ ○ ○ Gridworld Display				
	0.51 →	0.72 →	0.84 →	1.00	
	▲ 0.27		• 0.55	-1.00	
	•	0.22 →	▲ 0.37	∢ 0.13	
	VALUES AFTER 5 ITERATIONS				

000	0	Gridworl	d Display	
	0.59 →	0.73 →	0.85)	1.00
	• 0.41		• 0.57	-1.00
	• 0.21	0.31 →	• 0.43	∢ 0.19
	VALUE	S AFTER	6 ITERA	FIONS

0 0	Gridworl	d Display		
0.62 →	0.74 →	0.85)	1.00	
• 0.50		• 0.57	-1.00	
▲ 0.34	0.36 →	▲ 0.45	∢ 0.24	
VALUES AFTER 7 ITERATIONS				

0 0	Gridworl	d Display	
0.63)	0.74)	0.85)	1.00
• 0.53		• 0.57	-1.00
• 0.42	0.39 →	• 0.46	∢ 0.26
VALUE	S AFTER	8 ITERA	FIONS

00	Cridworld Display				
	0.64 →	0.74 ▸	0.85)	1.00	
	• 0.55		• 0.57	-1.00	
	• 0.46	0.40 →	• 0.47	∢ 0.27	
	VALUE	S AFTER	9 ITERA	FIONS	

0 0	Gridworl	d Display	
0.64 ▸	0.74 →	0.85 →	1.00
• 0.56		• 0.57	-1.00
• 0.48	∢ 0.41	▲ 0.47	◀ 0.27
VALUES AFTER 10 ITERATIONS			

0 0	Gridworld Display			
	0.64)	0.74 →	0.85)	1.00
	• 0.56		• 0.57	-1.00
	• 0.48	◀ 0.42	• 0.47	∢ 0.27
VALUES AFTER 11 ITERATIONS				

00	O Gridworld Display				
	0.64)	0.74)	0.85)	1.00	
	• 0.57		• 0.57	-1.00	
	0.49	∢ 0.42	• 0.47	∢ 0.28	
	VALUES AFTER 12 ITERATIONS				

0 0	Gridworl	d Display	-
0.64 →	0.74)	0.85)	1.00
• 0.57		▲ 0.57	-1.00
• 0.49	∢ 0.43	• 0.48	∢ 0.28
VALUES AFTER 100 ITERATIONS			

Computing Time-Limited Values

Value Iteration

Value Iteration

- Start with V₀(s) = 0: no time steps left means an expected reward sum of zero
- Given vector of V_k(s) values, do one step of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Repeat until convergence
- Complexity of each iteration: O(S²A)
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

Example: Value Iteration

Convergence*

- How do we know the V_k vectors are going to converge?
- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
 - Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - That last layer is at best all R_{MAX}
 - It is at worst R_{MIN}
 - But everything is discounted by γ^k that far out
 - So V_k and V_{k+1} are at most γ^k max | R | different
 - So as k increases, the values converge

Next Time: Policy-Based Methods