Announcements

- Homework 2
- Due 2/11 at 11:59pm
- Electronic HW2
- Written HW2
- Project 1
- Due Friday 2/8 at 4:00pm
- Mini-contest 1 (optional)
- Due 2/11 at 11:59pm

CS 188: Artificial Intelligence

Expectimax \& Markov Decision Processes

Instructors: Sergey Levine and Stuart Russell
University of California, Berkeley

Worst-Case vs. Average Case

Expectimax Search

- Why wouldn't we know what the result of an action will be?
- Explicit randomness: rolling dice
- Unpredictable opponents: the ghosts respond randomly
- Actions can fail: when moving a robot, wheels might slip
- Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax) outcomes
- Expectimax search: compute the average score under optimal play
- Max nodes as in minimax search

- Chance nodes are like min nodes but the outcome is uncertain
- Calculate their expected utilities
- I.e. take weighted average (expectation) of children
- Later, we'll learn how to formalize the underlying uncertainresult problems as Markov Decision Processes

Expectimax Pseudocode

def value(state):

if the state is a terminal state: return the state's utility if the next agent is MAX: return max-value(state) if the next agent is EXP: return exp-value(state)
def max-value(state): initialize $v=-\infty$ for each successor of state:
v = max(v, value(successor)) return v

def exp-value(state):

initialize $v=0$
for each successor of state:
p = probability(successor)
v += p * value(successor)
return v

Expectimax Pseudocode

```
def exp-value(state):
    initialize v = 0
        for each successor of state:
        p = probability(successor)
        v += p * value(successor)
    return v
```


$$
v=(1 / 2)(8)+(1 / 3)(24)+(1 / 6)(-12)=10
$$

Expectimax Example

Expectimax Pruning?

Depth-Limited Expectimax

Probabilities

Reminder: Probabilities

- A random variable represents an event whose outcome is unknown
- A probability distribution is an assignment of weights to outcomes
- Example: Traffic on freeway
- Random variable: $\mathrm{T}=$ whether there's traffic

0.25
- Outcomes: T in \{none, light, heavy\}
- Distribution: $\mathrm{P}(\mathrm{T}=$ none $)=0.25, \mathrm{P}(\mathrm{T}=$ light $)=0.50, \mathrm{P}(\mathrm{T}=$ heavy $)=0.25$
- Some laws of probability:
- Probabilities are always non-negative
- Probabilities over all possible outcomes sum to one

0.25

Reminder: Expectations

- The expected value of a function of a random variable is the average, weighted by the probability distribution over outcomes
- Example: How long to get to the airport?

What Probabilities to Use?

- In expectimax search, we have a probabilistic n of how the opponent (or environment) will beh any state
- Model could be a simple uniform distribution (roll a det)
- Model could be sophisticated and require a great deal of computation
- We have a chance node for any outcome out of our contr $\{1:$ opponent or environment
- The model might say that adversarial actions are likely!
- For now, assume each chance node magically comes along with probabilities that specify the distribution over its outcomes

Quiz: Informed Probabilities

- Let's say you know that your opponent is actually running a depth 2 minimax, using the result 80% of the time, and moving randomly otherwise
- Question: What tree search should you use?

- Answer: Expectimax!
- To figure out EACH chance node's probabilities, you have to run a simulation of your opponent
- This kind of thing gets very slow very quickly
- Even worse if you have to simulate your opponent simulating you...
- ... except for minimax, which has the nice property that it all collapses into one game tree

Other Game Types

Mixed Layer Types

- E.g. Backgammon
- Expectiminimax
- Environment is an extra "random agent" player that moves after each min/max agent

- Each node computes the
 appropriate combination of its children

Example: Backgammon

- Dice rolls increase $b: 21$ possible rolls with 2 dice
- Backgammon ≈ 20 legal moves
- Depth $2=20 \times(21 \times 20)^{3}=1.2 \times 10^{9}$
- As depth increases, probability of reaching a given search node shrinks
- So usefulness of search is diminished
- So limiting depth is less damaging

- But pruning is trickier...
- Historic AI: TDGammon uses depth-2 search + very good evaluation function + reinforcement learning: world-champion level play
- $1^{\text {st }} \mathrm{Al}$ world champion in any game!

Multi-Agent Utilities

- What if the game is not zero-sum, or has multiple players?
- Generalization of minimax:
- Terminals have utility tuples
- Node values are also utility tuples
- Each player maximizes its own component
- Can give rise to cooperation and competition dynamically...

Non-Deterministic Search

Example: Grid World

- A maze-like problem
- The agent lives in a grid
- Walls block the agent's path
- Noisy movement: actions do not always go as planned
- 80% of the time, the action North takes the agent North (if there is no wall there)
- 10% of the time, North takes the agent West; 10% East
- If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
- Small "living" reward each step (can be negative)
- Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World

Stochastic Grid World

Markov Decision Processes

- An MDP is defined by:
- A set of states $s \in S$
- A set of actions $a \in A$
- A transition function T(s, a, s')
- Probability that a from s leads to s^{\prime}, i.e., $\mathrm{P}\left(\mathrm{s}^{\prime} \mid \mathrm{s}, \mathrm{a}\right)$
- Also called the model or the dynamics
- A reward function $R\left(s, a, s^{\prime}\right)$
- Sometimes just $\mathrm{R}(\mathrm{s})$ or $\mathrm{R}\left(\mathrm{s}^{\prime}\right)$
- A start state
- Maybe a terminal state

- MDPs are non-deterministic search problems
- One way to solve them is with expectimax search
- We'll have a new tool soon

Video of Demo Gridworld Manual Intro

What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$
\begin{aligned}
& P\left(S_{t+1}=s^{\prime} \mid S_{t}=s_{t}, A_{t}=a_{t}, S_{t-1}=s_{t-1}, A_{t-1}, \ldots S_{0}=s_{0}\right) \\
& \quad= \\
& P\left(S_{t+1}=s^{\prime} \mid S_{t}=s_{t}, A_{t}=a_{t}\right)
\end{aligned}
$$

Andrey Markov (1856-1922)

- This is just like search, where the successor function could only depend on the current state (not the history)

Policies

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy $\pi^{*}: S \rightarrow A$
- A policy π gives an action for each state
- An optimal policy is one that maximizes expected utility if followed

- An explicit policy defines a reflex agent
- Expectimax didn't compute entire policies
- It computed the action for a single state only

Optimal Policies

$R(s)=-0.4$

Example: Racing

Example: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: Slow, Fast
- Going faster gets double reward

Racing Search Tree

MDP Search Trees

- Each MDP state projects an expectimax-like search tree

Utilities of Sequences

- What preferences should an agent have over reward sequences?
- More or less? $\quad[1,2,2]$ or $\quad[2,3,4]$
- Now or later? $[0,0,1]$ or $[1,0,0]$

Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

Worth Now

γ
Worth Next Step

γ^{2}
Worth In Two Steps

Discounting

- How to discount?
- Each time we descend a level, we multiply in the discount once
- Why discount?
- Sooner rewards probably do have higher utility than later rewards
- Also helps our algorithms converge
- Example: discount of 0.5
- $U([1,2,3])=1 * 1+0.5^{*} 2+0.25 * 3$
- $\mathrm{U}([1,2,3])<\mathrm{U}([3,2,1])$

Stationary Preferences

- Theorem: if we assume stationary preferences:

$$
\begin{aligned}
{\left[a_{1}, a_{2}, \ldots\right] } & \succ\left[b_{1}, b_{2}, \ldots\right] \\
& \hat{\Downarrow} \\
{\left[r, a_{1}, a_{2}, \ldots\right] } & \succ\left[r, b_{1}, b_{2}, \ldots\right]
\end{aligned}
$$

- Then: there are only two ways to define utilities
- Additive utility: $\quad U\left(\left[r_{0}, r_{1}, r_{2}, \ldots\right]\right)=r_{0}+r_{1}+r_{2}+\cdots$
- Discounted utility: $U\left(\left[r_{0}, r_{1}, r_{2}, \ldots\right]\right)=r_{0}+\gamma r_{1}+\gamma^{2} r_{2} \ldots$

Quiz: Discounting

- Given:

- Actions: East, West, and Exit (only available in exit states a, e)
- Transitions: deterministic
- Quiz 1: For $\gamma=1$, what is the optimal policy?

- Quiz 2: For $\gamma=0.1$, what is the optimal policy?

10				1

- Quiz 3: For which γ are West and East equally good when in state d?

Infinite Utilities?!

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:
- Finite horizon: (similar to depth-limited search)
- Terminate episodes after a fixed T steps (e.g. life)
- Gives nonstationary policies (π depends on time left)
- Discounting: use $0<\gamma<1$

$$
U\left(\left[r_{0}, \ldots r_{\infty}\right]\right)=\sum_{t=0}^{\infty} \gamma^{t} r_{t} \leq R_{\max } /(1-\gamma)
$$

- Smaller γ means smaller "horizon" - shorter term focus
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)

Recap: Defining MDPs

- Markov decision processes:
- Set of states S
- Start state s_{0}
- Set of actions A
- Transitions P(s'|s,a) (or T(s,a, s'))
- Rewards R(s,a, s') (and discount γ)

- MDP quantities so far:
- Policy = Choice of action for each state
- Utility = sum of (discounted) rewards

Solving MDPs

Optimal Quantities

- The value (utility) of a state s :
$V^{*}(s)=$ expected utility starting in s and acting optimally
- The value (utility) of a q-state ($s, a)$:
$Q^{*}(s, a)=$ expected utility starting out having taken action a from state s and (thereafter) acting optimally

- The optimal policy:
$\pi^{*}(\mathrm{~s})=$ optimal action from state s

Snapshot of Demo - Gridworld V Values

Gridworld Display

VALUES AFIER 100 IMERATIONS

Noise $=0.2$
Discount = 0.9
Living reward $=0$

Snapshot of Demo - Gridworld Q Values

Gridworld Display

Q-VALUES AFTER 100 ITERATIONS

Noise $=0.2$
Discount = 0.9
Living reward = 0

Values of States

- Fundamental operation: compute the (expectimax) value of a state
- Expected utility under optimal action
- Average sum of (discounted) rewards
- This is just what expectimax computed!
- Recursive definition of value:

$$
\begin{aligned}
& V^{*}(s)=\max _{a} Q^{*}(s, a) \\
& Q^{*}(s, a)=\sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right] \\
& V^{*}(s)=\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
\end{aligned}
$$

Racing Search Tree

Racing Search Tree

Racing Search Tree

- We're doing way too much work with expectimax!
- Problem: States are repeated
- Idea: Only compute needed quantities once
- Problem: Tree goes on forever
- Idea: Do a depth-limited computation, but with increasing depths until change is small
- Note: deep parts of the tree eventually don't matter if $\gamma<1$

Time-Limited Values

- Key idea: time-limited values
- Define $\mathrm{V}_{\mathrm{k}}(\mathrm{s})$ to be the optimal value of s if the game ends in k more time steps
- Equivalently, it's what a depth-k expectimax would give from s

$\mathrm{k}=0$

Gridworld Display

Δ	Δ	Δ	\square
0.00	0.00	0.00	0.00
0.00		0.00	0.00
Δ	$\boxed{ }$		
0.00	0.00	0.00	0.00

VALUES AFTER 0 ITERARIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$

Δ	Δ		
0.00	0.00	0.00	1.00
0.00		0.00	-1.00
Δ	$\boxed{ }$		
0.00	0.00	0.00	0.00

VALUES AFTER 1 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$

VALUES AFTER 2 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$

VALUES AFTER 3 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$

VALUES AFTER 4 ITERARIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$

VALUES AFTER 5 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$

VALUES AFTER 6 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$

0.62,	0.74,	0.85	1.00
0		4	$\boxed{ }$
0.50		0.57	-1.00
4	0.36	0.45	40.24
0.34			

VALUES AFTER 7 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$

$$
\mathrm{k}=8
$$

Gridworld Display

VATUES AFMER 8 IMERAMIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$

0.64	0.74	0.85	1.00
-		-	
0.55		0.57	-1.00
-		-	
0.46	0.40	0.47	40.27

VALUES AFTER 9 ITERARIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$

$\mathrm{k}=10$

Gridworld Display

$0.64>$	$0.74>$	$0.85>$	1.00
0.56		\bullet	
0.0 .57	-1.00		
0.48	0.41	0.47	40.27

VALUES AFIER 10 IMERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$
$\mathrm{k}=11$

0.64	0.74	0.85	1.00
-		-	
0.56		0.57	-1.00
-		-	
0.48	40.42	0.47	40.27

VALUES AFIER 11 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$

$\mathrm{k}=12$

Gridworld Display

$0.64>$	0.74	$0.85>$	1.00
0.57		Δ	
0.0 .57	-1.00		
0.49	0.42	0.47	40.28
0			

VALUES AFTER 12 ITERATIONS

Noise $=0.2$
Discount $=0.9$
Living reward $=0$

$\mathrm{k}=100$

Gridworld Display

0.64	0.74	0.85	1.00
-		-	
0.57		0.57	-1.00
-		-	
0.49	40.43	0.48	40.28

VALUES AFTER 100 ITERATIONS

Noise $=0.2$
Discount = 0.9
Living reward = 0

Computing Time-Limited Values

Value Iteration

Value Iteration

- Start with $\mathrm{V}_{0}(\mathrm{~s})=0$: no time steps left means an expected reward sum of zero
- Given vector of $\mathrm{V}_{\mathrm{k}}(\mathrm{s})$ values, do one step of expectimax from each state:

$$
V_{k+1}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

- Repeat until convergence
- Complexity of each iteration: $O\left(S^{2} A\right)$
- Theorem: will converge to unique optimal values
- Basic idea: approximations get refined towards optimal values
- Policy may converge long before values do

Example: Value Iteration

Convergence*

- How do we know the V_{k} vectors are going to converge?
- Case 1: If the tree has maximum depth M , then V_{M} holds the actual untruncated values
- Case 2: If the discount is less than 1
- Sketch: For any state V_{k} and $\mathrm{V}_{\mathrm{k}+1}$ can be viewed as depth $k+1$ expectimax results in nearly identical search trees
- The difference is that on the bottom layer, $\mathrm{V}_{\mathrm{k}+1}$ has actual rewards while V_{k} has zeros
- That last layer is at best all $R_{\text {MAX }}$
- It is at worst $\mathrm{R}_{\text {MIN }}$
- But everything is discounted by γ^{k} that far out

- So V_{k} and V_{k+1} are at most $\gamma^{k} \max |R|$ different
- So as k increases, the values converge

Next Time: Policy-Based Methods

