Announcements

o Homework 3
o Due2/18 at 11:59pm

o Project 2
o Due 2/22 at 4:00pm

o Tutoring: read @260 on Piazza, we now have 1:1 tutoring available



CS 188: Artificial Intelligence

Reinforcement Learning

Instructor: Sergey Levine & Anca Dragan

University of California, Berkeley

[Slides by Dan Klein, Pieter Abbeel, Anca Dragan, Sergey Levine. http://ai.berkeley.edu.]



Before: Markov Decision Processes

o Still assume a Markov decision process (MDP):

o A set of statess € S

o A set of actions (per state) A
o A model T(s,a,s’)

o A reward function R(s,a,s”)

Overheated



Reinforcement Learning




Example: Prescription Problem

P(cure) =0.2 P(cure) =0.4 P(cure) =0.9 P(cure) =0.1

start




Example: Prescription Problem

start




Let’s Play!

http://iosband.github.i0/2015/07/28/Beat-the-bandit.html



What Just Happened?

o That wasn’t planning, it was learning!
o Specifically, reinforcement learning
o There was an MDP, but you couldn’t solve it with just computation

o You needed to actually act to figure it out

o Important ideas in reinforcement learning that came up
o Exploration: you have to try unknown actions to get information
o Exploitation: eventually, you have to use what you know
o Regret: even if you learn intelligently, you make mistakes
o Sampling: because of chance, you have to try things repeatedly
o Difficulty: learning can be much harder than solving a known MDP



Reinforcement Learning

o Still assume a Markov decision process (MDP):

o A set of statess € S

o A set of actions (per state) A
o A model T(s,a,s’)

o A reward function R(s,a,s”)

Overheated

o Still looking for a policy n(s)

o New twist: don’t know T or R
o L.e. we don’t know which states are good or what the actions do
o Must actually try actions and states out to learn



Reinforcement Learning

\

Agent

State: s

Reward: r Actions: a

-

Environment

&

Receive feedback in the form of rewards

Agent’s utility is defined by the reward function

Must (learn to) act so as to maximize expected rewards
All learning is based on observed samples of outcomes!

o Basicidea:

O
O
O
O



Cheetah

———
-

A
-
HEE

episode: 160 return: 4254



Atari

©Two Minute Lectures

12






Robots




The Crawler!

[Demo: Crawler Bot (L10D1)] [You, in Project 3]



Video of Demo Crawler Bot




Reinforcement Learning

o Still assume a Markov decision process (MDP):

o A set of statess € S

o A set of actions (per state) A
o A model T(s,a,s’)

o A reward function R(s,a,s”)

Overheated

o Still looking for a policy n(s)

o New twist: don’t know T or R
o L.e. we don’t know which states are good or what the actions do
o Must actually try actions and states out to learn



Offline (MDPs) vs. Online (RL)

»

Offline Solution Online Learning




Model-Based Learning




Model-Based Learning

o Model-Based Idea:

o Learn an approximate model based on experiences
o Solve for values as if the learned model were correct

o Step 1: Learn empirical MDP model
o Count outcomes s’ for each s, a
o Normalize to give an estimate of T'(s, a,s’)
o Discover each R(s,a,s’) when we experience (s, a, s’)

o Step 2: Solve the learned MDP

o For example, use value iteration, as before



Example: Model-Based Learning

Input Policy ©

Assume:y=1

Observed Episodes (Training)

Episode 1

-
B, east, C, -1
C, east, D, -1

' +
L D, exit, X, 10)

Episode 3

4 )
E, north, C, -1

C,east, D, -1

' +
\D, exit, X, 10)

Episode 2

-
B, east, C, -1
C, east, D, -1

' +
L D, exit, X, 10)

Episode 4

4 )
E, north, C, -1
C, east, A, -1

% A, exit, X, —10j

Learned Model

T(s,a,s")
(T(B, east, C) = A
T(C, east, D) =
T(C, east, A) =
\_ J
R(s,a,s")
4 R(B, east, C) = )
R(C, east, D) =
R(D, exit, x) =
1\ J




Example: Expected Age

Goal: Compute expected age of cs188 students

Known P(A)

E[A]=) P(a)-a =035x20+...

Without P(A), instead collect samples [a,, a,, ... a,]

/ Unknown P(A): “Model Based” \

Why does this
work? Because
eventually you
learn the right
model.

/ Unknown P(A): “Model Free”

\

A num(a)

FElA] = %Zai

Why does this
work? Because
samples appear

with the right

frequencies.

—




Model-Free Learning




Passive Reinforcement Learning

1




Passive Reinforcement Learning

o Simplified task: policy evaluation
o Input: a fixed policy n(s)
o You don’t know the transitions T(s,a,s”)
o You don’t know the rewards R(s,a,s’)
o Goal: learn the state values

o In this case:
o Learner is “along for the ride”
o No choice about what actions to take
o Just execute the policy and learn from experience
o This is NOT offline planning! You actually take actions in the world.




Direct Evaluation

o Goal: Compute values for each state under =

o Idea: Average together observed sample
values
o Act according to

o Every time you visit a state, write down what the
sum of discounted rewards turned out to be

o Average those samples

o This is called direct evaluation



Input Policy n

Assume: y=1

Example: Direct Evaluation

Observed Episodes (Training)

Episode 1
4 B, east, C, -1 )
C, east, D, -1
D, exit, x, +10
N\ Y,
Episode 3
4 E, north, C, -1 )
C,east, D, -1
D, exit, x, +10
N\ Y,

Episode 2

4 B, east, C, -1 )
C, east, D, -1
D, exit, x, +10

1\ J

Episode 4

4 E, north, C, -1 h
C, east, A, -1
A, exit, x,-10

\_ J

Output Values




Problems with Direct Evaluation

o What's good about direct evaluation? Output Values

o It’s easy to understand

o It doesn’t require any knowledge of T, R

o It eventually computes the correct average
values, using just sample transitions

o What bad about it?

o It wastes information about state connections

If B and E both go to C

. . under this policy, how can
O SO, it takes a long time to learn their values be different?

o Each state must be learned separately



Why Not Use Policy Evaluation?

o Simplified Bellman updates calculate V for a fixed policy: S
o Each round, replace V with a one-step-look-ahead layer over V
n(s)
Vo(s) =0
s, T(S)
V() & T, m(s), DR w(). ) FVEO] 0 N
/ 7 / )
s A

o This approach fully exploited the connections between the states
o Unfortunately, we need T and R to do it!

o Key question: how can we do this update to V without knowing T and R?
o In other words, how to we take a weighted average without knowing the weights?



Sample-Based Policy Evaluation?

o We want to improve our estimate of V by computing these averages:

Vig1(8) < X _T(s,7(s),s)[R(s,7(s),s") + vV} ()]
o Idea: Take samsples of outcomes s’ (by doing the action!) and average

sample; = R(s, m(s), 8’1) + ’YV]Z(Sll)
samples = R(s,m(s),s5) + YV (s5) ’( i; \
sample, = R(s, m(s), S;@) + "YV/?(S%,) > A 7

1
Vig1(8) < - Z sample;
()




Temporal Ditference Learning

o Bigidea: learn from every experience!
o Update V(s) each time we experience a transition (s, a, s’, 1) 7(s)
o Likely outcomes s” will contribute updates more often

o Temporal ditference learning of values
o Policy still fixed, still doing evaluation!

o Move values toward value of whatever successor occurs: running
average

Sample of V(s):  sample = R(s,m(s),s") +~V7(s")
Update to V(s): V7™(s) <+ (1 — a)V"(s) 4+ (a)sample

Same update: VT(s) <« V"(s) + a(sample — V" (s))



Exponential Moving Average

o Exponential moving average
o The running interpolation update: Z, = (1 —«a) - Zp—1 + -z,

o Makes recent samples more important:

Tp+(1—a) Tp1+(1—a)? zpo+...
I1+(1-a)+(1—-a)2+...

Ty =
o Forgets about the past (distant past values were wrong anyway)

o Decreasing learning rate (alpha) can give converging averages



Example: Temporal Difference Learning

States

5 lclo

Assume:y=1,a=1/2

Observed Transitions

[ B, east, C, -2 ] [ C, east, D, -2 ]

oloef afo]e] (a3 ]

V7(s) = (1 = a)V7(s) +a |R(s,m(s),s) +4V7(s")




Active Reinforcement Learning




Problems with TD Value Learning

o TD value leaning is a model-free way to do policy evaluation,
mimicking Bellman updates with running sample averages

o However, if we want to turn values into a (new) policy, we’re sunk:
m(s) = argmaxQ(s,a)
a

Q(s,a) = ZT(S, a,s') [R(s, a,s’) + ’)/V(S,)}

o Idea: learn Q-values, not values

o Makes action selection model-free too!



Detour: Q-Value Iteration

o Value iteration: find successive (depth-limited) values
o Start with V(s) =0, which we know is right
o Given V,, calculate the depth k+1 values for all states:

Vip1(s) < max > T(s,a,s") |R(s,a,8") + V()

o But Q-values are more useful, so compute them instead
o Start with Q(s,a) =0, which we know is right
o Given Q,, calculate the depth k+1 g-values for all g-states:

Qt1(s,a) « S T(s,a,8) | R(s,a,8) +7 maxQu(s',a)



Q-Learning

o Q-Learning: sample-based Q-value iteration
Qt1(s,a) « S T(s,a,8) |R(s,a,8) +7 maxQu(s',a')

o Learn Q(s,a) values as you go

o Receive a sample (s,a,s',1) %%

o Consider your old estimate: Q(s,a)

Wl
o Consider your new sample estimate: AN

S DDEPPE

o Incorporate the new estimate into a running average:

Q(s,a) — (1 —a)Q(s,a) + (@) [sample]

[Demo: Q-learning — gridworld (L10D2)]
[Demo: Q-learning — crawler (L10D3)]



Video of Demo Q-Learning -- Gridworld




Video of Demo Q-Learning -- Crawler




Q-Learning:
act according to current policy (and also explore...)

o Full reinforcement learning: optimal policies (like value
iteration)
o You don’t know the transitions T(s,a,s”)
o You don’t know the rewards R(s,a,s’)
o You choose the actions now
o Goal: learn the optimal policy / values

o In this case:
o Learner makes choices!
o Fundamental tradeoff: exploration vs. exploitation

o This is NOT offline planning! You actually take actions in the world
and find out what happens...



Q-Learning Properties

o Amazing result: Q-learning converges to optimal policy --
even if you're acting suboptimally!

o This is called off-policy learning
o Caveats:

o You have to explore enough
o You have to eventually make the learning rate

small enough

o ... but not decrease it too quickly
o Basically, in the limit, it doesn’t matter how you select actions (!)



Exploration vs. Exploitation

b7

GRAND

i
P
=




How to Explore?

o Several schemes for forcing exploration

o Simplest: random actions (e-greedy)
o Every time step, flip a coin
o With (small) probability ¢, act randomly
o With (large) probability 1-¢, act on current policy

o Problems with random actions?

o You do eventually explore the space, but keep
thrashing around once learning is done

o One solution: lower € over time



