C191 - Homework 1

1. States - Recall the states $| \pm\rangle$, defined as:

Compute the following using both bra-ket notation and matrix notation:
(a) $\langle 0 \mid+\rangle$
(b) $|0\rangle\langle+1$
(c) $\langle+\mid-\rangle$
(d) $|+\rangle\langle-1$
(e) $|+\rangle \otimes|-\rangle$
2. Operators - The Pauli matrices are defined as

$$
\mathrm{X}=\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \mathrm{Y}=\sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \mathrm{Z}=\sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

(a) Write down the eigenvalues and normalized eigenstates for all three Pauli matrices.
(b) Using matrix multiplication, verify the following relations:
i. $\sigma_{x}^{2}=\sigma_{y}^{2}=\sigma_{z}^{2}=\mathcal{I}$ where \mathcal{I} is the identity matrix
ii. $\sigma_{x} \sigma_{y}=i \sigma_{z}$
iii. $\left[\sigma_{x}, \sigma_{y}\right]=2 i \sigma_{z}$
(c) Verify the Pauli-Euler relation,

$$
\exp (i \theta \hat{n} \cdot \vec{\sigma})=\cos \theta \mathcal{I}+i \sin \theta \hat{n} \cdot \vec{\sigma}
$$

where θ is a real number, \hat{n} is a unit vector in \mathbb{R}^{3}, and $\vec{\sigma}$ is the vector of Pauli matrices. Proceed by
i. Compute $(\hat{n} \cdot \vec{\sigma})^{2 m}$ for m an integer
ii. Compute $(\hat{n} \cdot \vec{\sigma})^{2 m+1}$ for m an integer
iii. Expand the left hand side in a Taylor series about $\theta=0$
iv. Expand the right hand side in a Taylor series about $\theta=0$
v. Show that they are equal
3. Combining quantum states - Consider two quantum states:

$$
\begin{aligned}
|\psi\rangle & =\frac{1}{\sqrt{2}}|0\rangle-\frac{i}{\sqrt{2}}|1\rangle \\
|\phi\rangle & =\frac{1}{\sqrt{2}}|0\rangle+\frac{i}{\sqrt{2}}|1\rangle
\end{aligned}
$$

Compute the following:
(a) $|\psi\rangle \otimes|\phi\rangle$
(b) $\langle\psi| \otimes\langle\phi|$
(c) $\left(\sigma_{x} \otimes \mathcal{I}\right)(|\psi\rangle \otimes|\phi\rangle)$
(d) $\left(\sigma_{x} \otimes \sigma_{x}\right)(|\psi\rangle \otimes|\phi\rangle)$
4. Entangled states - When combining two qubits, a common basis is the singlet-triplet basis. The three triplet states are

$$
\begin{aligned}
|\mathrm{T}, 1\rangle & =|11\rangle \\
|\mathrm{T}, 0\rangle & =\frac{1}{\sqrt{2}}|01\rangle+\frac{1}{\sqrt{2}}|10\rangle \\
|\mathrm{T},-1\rangle & =|00\rangle
\end{aligned}
$$

and the singlet state is defined as,

$$
|S\rangle=\frac{1}{\sqrt{2}}|01\rangle-\frac{1}{\sqrt{2}}|10\rangle
$$

Show the following:
(a) Show that $|\mathrm{S}\rangle$ and $|\mathrm{T}, 0\rangle$ states are not separable states, $\phi \otimes \psi$, for any single-qubit states ϕ and ψ.
(b) $|\mathrm{S}\rangle$ is invariant under global rotation. That is, for any one-qubit operator U, that

$$
(U \otimes U)|\mathrm{S}\rangle=|\mathrm{S}\rangle
$$

5. Dynamics - Dynamics in quantum mechanics are given by the Schrodinger equation:

$$
i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle=H|\psi(t)\rangle
$$

Let the Hamiltonian $H=\alpha X$ and the initial state $|\psi(0)\rangle=|0\rangle$.
(a) What is $\psi(t)$ in the $|0\rangle,|1\rangle$ basis?
(b) What is $\psi(t)$ in the $|+\rangle,|-\rangle$ basis?

