C191 - Homework 2

1. The secular approximation - The hyperfine contact interaction in Hydrogen governs the interaction between the electron spin and the nuclear proton spin. This interaction is represented by the Hamiltonian,

$$
\begin{align*}
H_{0} & =J \vec{\sigma}^{(e)} \cdot \vec{\sigma}^{(p)} \tag{1}\\
& =J\left(\sigma_{x}^{(e)} \otimes \sigma_{x}^{(p)}+\sigma_{y}^{(e)} \otimes \sigma_{y}^{(p)}+\sigma_{z}^{(e)} \otimes \sigma_{z}^{(p)}\right) \tag{2}\\
& =J\left(2 \sigma_{+}^{(e)} \otimes \sigma_{-}^{(p)}+2 \sigma_{-}^{(e)} \otimes \sigma_{+}^{(p)}+\sigma_{z}^{(e)} \otimes \sigma_{z}^{(p)}\right) \tag{3}
\end{align*}
$$

Where the superscripts ${ }^{(e)}$ and ${ }^{(p)}$ indicate that the operator acts on the electron or proton, respectively, and the spin raising/lowering matrices are:

$$
\sigma_{-}=\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right) \quad \sigma_{+}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

Suppose now that a large magnetic field, B, is applied, interacting with the spins via the following Hamiltonian,

$$
H_{1}=\frac{1}{2} g \mu_{B} B \sigma_{z}^{(e)}-\frac{1}{2} g \mu_{n} B \sigma_{z}^{(p)}
$$

Notice that the sign and magnitude of the interaction is different for the electron and the proton: the nuclear magneton, $\mu_{n}=e \hbar / 2 m_{p}$, is roughly 2000 times smaller than the Bohr magneton, $\mu_{B}=e \hbar / 2 m_{e}$, because the ratio of the proton mass to the electron mass is $m_{p} / m_{e} \simeq 2000$, while the sign difference is due to the opposite signs of the electron and proton charge. The total Hamiltonian is then $H=H_{0}+H_{1}$. Show that, if the magnetic field is sufficiently large, then we can take the secular approximation,

$$
H \simeq H_{\mathrm{sec}}=J \sigma_{z}^{(e)} \sigma_{z}^{(p)}+\frac{1}{2} g \mu_{B} B \sigma_{z}^{e}-\frac{1}{2} g \mu_{n} B \sigma_{z}^{p}
$$

To do this,
(a) Transform into a rotating frame with respect to H_{1}. That is, determine the Hamiltonian governing the evolution of the state

$$
\left|\psi^{\prime}(t)\right\rangle=\exp \left(i H_{1} t / \hbar\right)|\psi(t)\rangle
$$

Where $|\psi(t)\rangle$ obeys the Schrodinger equation:

$$
i \hbar \frac{d}{d t}|\psi(t)\rangle=\left(H_{0}+H_{1}\right)|\psi(t)\rangle
$$

It will help to prove the following identities:

$$
\begin{aligned}
& \exp \left(i \alpha \sigma_{z}\right) \sigma_{+} \exp \left(-i \alpha \sigma_{z}\right)=e^{2 i \alpha} \sigma_{+} \\
& \exp \left(i \alpha \sigma_{z}\right) \sigma_{-} \exp \left(-i \alpha \sigma_{z}\right)=e^{-2 i \alpha} \sigma_{-}
\end{aligned}
$$

(b) Argue that all quickly oscillating terms may be neglected. Why does the magnetic field need to be large?
(c) Transform back into the lab frame.
2. Spin echo - Suppose that a qubit, initially in the state $|+\rangle$, is subjected to a magnetic field of unknown strength, B, experiencing a Hamiltonian,

$$
H=K B \sigma_{z}
$$

(a) What is the state of the qubit after a time, τ ?
(b) At time τ, a strong field is applied, causing a unitary operator, σ_{x} to be applied to the qubit. What is the state of the qubit now?
(c) The qubit is allowed to evolve under the Hamiltonian H for an additional time τ. What is the final state of the qubit?
3. Circuit model exercises
(a) Show that a CNOT can be achieved from a CPHASE and two Hadamard operations

(b) Show the reverse,

(c) Show that a SWAP gate may be implemented as three CNOTs

(d) For a matrix $U=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, what is the matrix representation of the following quantum circuits i.

ii.

iii.

iv.

4. Single qubit gates We saw in class that the Hamiltonian,

$$
H=-\frac{1}{2} g \mu_{B}\left(B_{0} \sigma_{z}+B_{1} \cos (\omega t) \sigma_{x}\right)
$$

could generate a unitary operator $U(\tau) \propto \sigma_{x}$ if applied for a time, τ. Now let's change the phase on the oscillating term,

$$
H_{1}=-\frac{1}{2} g \mu_{B}\left(B_{0} \sigma_{z}+B_{1} \sin (\omega t) \sigma_{x}\right)
$$

(a) If this Hamiltonian is allowed to act for the same time, τ, what unitary operator is generated (in the rotating frame)?
(b) If we wanted to generate the unitary operator,

$$
U \propto \cos (\theta) \sigma_{x}+\sin (\theta) \sigma_{y}
$$

what Hamiltonian could we apply to do this? You should check that this operator is, in fact, unitary!

