
C191 - Homework 2

1. The secular approximation - The hyperfine contact interaction in Hydrogen governs the interaction between
the electron spin and the nuclear proton spin. This interaction is represented by the Hamiltonian,
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Where the superscripts (e) and (p) indicate that the operator acts on the electron or proton, respectively, and
the spin raising/lowering matrices are:
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0 0
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σ+ =

(

0 1
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Suppose now that a large magnetic field, B, is applied, interacting with the spins via the following Hamiltonian,
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Notice that the sign and magnitude of the interaction is different for the electron and the proton: the nuclear
magneton, µn = e!/2mp, is roughly 2000 times smaller than the Bohr magneton, µB = e!/2me, because the
ratio of the proton mass to the electron mass is mp/me ≃ 2000, while the sign difference is due to the opposite
signs of the electron and proton charge. The total Hamiltonian is then H = H0+H1. Show that, if the magnetic
field is sufficiently large, then we can take the secular approximation,
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To do this,

(a) Transform into a rotating frame with respect to H1. That is, determine the Hamiltonian governing the
evolution of the state

|ψ′(t)⟩ = exp (iH1t/!) |ψ(t)⟩

Where |ψ(t)⟩ obeys the Schrodinger equation:

i!
d

dt
|ψ(t)⟩ = (H0 +H1) |ψ(t)⟩

It will help to prove the following identities:

exp (iασz)σ+ exp (−iασz) = e2iασ+

exp (iασz)σ− exp (−iασz) = e−2iασ−

(b) Argue that all quickly oscillating terms may be neglected. Why does the magnetic field need to be large?

(c) Transform back into the lab frame.

2. Spin echo - Suppose that a qubit, initially in the state |+⟩, is subjected to a magnetic field of unknown strength,
B, experiencing a Hamiltonian,

H = KBσz

(a) What is the state of the qubit after a time, τ?

(b) At time τ , a strong field is applied, causing a unitary operator, σx to be applied to the qubit. What is the
state of the qubit now?
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(c) The qubit is allowed to evolve under the Hamiltonian H for an additional time τ . What is the final state
of the qubit?

3. Circuit model exercises

(a) Show that a CNOT can be achieved from a CPHASE and two Hadamard operations

•

H • H

= •

(b) Show the reverse,

•

H H

= •

•

(c) Show that a SWAP gate may be implemented as three CNOTs

×

×
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•

(d) For a matrix U =

(

a b
c d

)

, what is the matrix representation of the following quantum circuits

i.

U

ii.

U

iii.

•

U

iv.

U

•

4. Single qubit gates We saw in class that the Hamiltonian,

H = −
1

2
gµB (B0σz +B1 cos(ωt)σx)

could generate a unitary operator U(τ) ∝ σx if applied for a time, τ . Now let’s change the phase on the
oscillating term,

H1 = −
1

2
gµB (B0σz +B1 sin(ωt)σx)

(a) If this Hamiltonian is allowed to act for the same time, τ , what unitary operator is generated (in the
rotating frame)?

(b) If we wanted to generate the unitary operator,

U ∝ cos(θ)σx + sin(θ)σy ,

what Hamiltonian could we apply to do this? You should check that this operator is, in fact, unitary!
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