
1 The secular approximation

1.1 Rotating frame

Define

|ψ′(t)〉 = eiH1t/h̄|ψ(t)〉

We will seek an equation governing time evolution for |ψ′(t)〉. First, let’s write
the ordinary Schrodinger equation in terms of |ψ′(t)〉:

ih̄
d

dt
|ψ(t)〉 =(H0 +H1)|ψ(t)〉

ih̄
d

dt
(e−iH1t/h̄|ψ′(t)〉) =(H0 +H1)e−iH1t/h̄|ψ′(t)〉

ih̄(−iH1/h̄e
−iH1t/h̄|ψ′(t)〉+ e−iH1t/h̄

d

dt
|ψ′(t)〉) =(H0 +H1)e−iH1t/h̄|ψ′(t)〉

(H1|ψ′(t)〉+ ih̄
d

dt
|ψ′(t)〉) =eiH1t/h̄(H0 +H1)e−iH1t/h̄|ψ′(t)〉

ih̄
d

dt
|ψ′(t)〉 =(eiH1t/h̄H0e

−iH1t/h̄ + eiH1t/h̄H1e
−iH1t/h̄ −H1)|ψ′(t)〉

ih̄
d

dt
|ψ′(t)〉 =eiH1t/h̄H0e

−iH1t/h̄|ψ′(t)〉

In the physics literature, this is transformation is often referred to as the
“interaction picture”, and the last line is the Schrodinger equation in the inter-
action picture. The eiH1t/h̄H0e

−iH1t/h̄ is the interaction picture Hamiltonian.
Several times in the above derivation I have used the fact that H1 and e−iH1t/h̄

commute, and therefore I am free to move the matrix exponentials across the
H1 whenever I would like. This is because the matrix exponential of H1 is a
power series only of H1, and we expect H1 to commute with any polynomial
function of H1. This is not the case for H0, and I am not allowed to move
e−iH1t/h̄ across H0.

Now let’s see if we can do anything with this. matrix product. Remember

H0 =J(2σe+ ⊗ σ
p
− + 2σe− ⊗ σ

p
+ + σez ⊗ σpz)

H1 =(1/2)gµBBσz − (1/2)gµNBσz

Let’s work on the interaction picture Hamiltonian eiH1t/h̄H0e
−iH1t/h̄:

eiH1t/h̄H0e
−iH1t/h̄ =e(i/2h̄)gB(µBσ

e
z−µNσ

p
z )tJ(2σ+ ⊗ σ− + 2σ− ⊗ σ+ + σz ⊗ σz)e(−i/2h̄)gB(µBσ

e
z−µNσ

p
z )t

Well that looks complicated. Let’s take this piece by piece.

e(i/2h̄)gB(µBσ
e
z−µNσ

p
z )tσ+ ⊗ σ−e(−i/2h̄)gB(µBσ

e
z−µNσ

p
z )t =

e(i/2h̄)gBµBσ
e
ztσe+e

(−i/2h̄)gBµBσ
e
zt ⊗ e(−i/2h̄)gBµNσ

e
ztσp−e

(i/2h̄)gBµNσ
e
zt =

eiωetσe+ ⊗ eiωptσp− =

ei(ωe+ωp)tσe+ ⊗ σ
p
−
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Here, I have made use of the identity eiασzσ+e
−iασz = e2iασ+, and the

analogous equation for σ−. You should prove this for yourself. It is not difficult,
and can be done by direct matrix multiplication. I have also defined here ωe =
gµBB/h̄ and ωp = gµNB/h̄.

The next term is similar, and we find:

e(i/2h̄)gB(µBσ
e
z−µNσ

p
z )tσ− ⊗ σ+e

(−i/2h̄)gB(µBσ
e
z−µNσ

p
z )t =

e−i(ωe+ωp)tσe− ⊗ σ
p
+

The last part is a bit different, however. We note that e(i/2h̄)gB(µBσ
e
z−µNσ

p
z )t

commutes with σez ⊗ σpz . Therefore:

e(i/2h̄)gB(µBσ
e
z−µNσ

p
z )tσez ⊗ σpze(−i/2h̄)gB(µBσ

e
z−µNσ

p
z )t =

σez ⊗ σpz

Putting it all together then, our Schrodinger equation for |ψ′(t)〉 reads

ih̄
d

dt
|ψ′(t)〉 = J(2ei(ωe+ωp)tσe+⊗σ

p
−+ 2e−i(ωe+ωp)tσe−⊗σ

p
+ +σez ⊗σpz)|ψ′(t)〉

1.2 Neglecting the fast oscillating terms

The frequencies ωe and ωp depend linearly on B. For large B, ωe + ωp � J/h̄,
and thus the effects of the σ+ ⊗ σ− terms will very quickly average to zero and
can thus be neglected in comparison to the σez ⊗ σpz term. Of course, this will
not be satisfied if B is not large enough. Making this approximation, we have

ih̄
d

dt
|ψ′(t)〉 ≈ Jσez ⊗ σpz |ψ′(t)〉

This is known as the rotating wave approximation.

1.3 Going back to the lab frame

The way we go back to the lab frame is to do the inverse thing we did in the first
section. We take our evolution equation for |ψ′(t)〉, and replace it with |ψ(t)〉,
using the definition |ψ(t)〉 = e−iH1t/h̄|ψ′(t)〉.

ih̄
d

dt
|ψ′(t)〉 ≈ Jσez ⊗ σpz |ψ′(t)〉

ih̄
d

dt
(eiH1t/h̄|ψ(t)〉) = Jσez ⊗ σpzeiH1t/h̄|ψ(t)〉

−H1e
iH1t/h̄|ψ(t)〉+ ih̄

d

dt
|ψ(t)〉 = Jσez ⊗ σpzeiH1t/h̄|ψ(t)〉

ih̄
d

dt
|ψ(t)〉 = (H1 + Jσez ⊗ σpz)|ψ(t)〉
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In the last line, I made use again of the fact that H1 commutes with σez ⊗
σpz , by multiplying both sides of the equation with e−iH1t/h̄. In any case, the
last line is the equation we seek: the term H1 + Jσez ⊗ σpz = (1/2)gµBBσ

e
z −

(1/2)gµNBσ
p
z+Jσez⊗σpz is the Hamiltonian in the secular approximation. Thus,

in this approximation, the evolution of |ψ(t)〉 is described by this Hamiltonian.

2 Spin echo

H = KBσz

2.1 What is the state of the qubit after time τ?

We know that |ψ(t)〉 = e−iHt/h̄|ψ(0)〉 = e−iKBtσz/h̄|ψ(0)〉. |ψ(0)〉 = |+〉. We
also proved a thing in the previous homework about matrix exponentials of this
form. We get:

|ψ(τ)〉 =

e−iKBτσz/h̄|+〉 =(cos(KBτ/h̄)I + i sin(KBτ/h̄)σz)|+〉

=
1√
2

((cos(KBτ/h̄)I + i sin(KBτ/h̄)σz)(|0〉+ |1〉)

=
1√
2

((cos(KBτ/h̄) + i sin(KBτ/h̄))|0〉+ (cos(KBτ/h̄)− i sin(KBτ/h̄))|1〉)

=
1√
2

(eiKBτ/h̄|0〉+ e−iKBτ/h̄|1〉)

where I used the fact that σz|0〉 = |0〉 and σz|1〉 = −|1〉.

2.2 Now apply σx at time τ

We can read off from the matrix form of σx that σx|0〉 = |1〉 and σx|1〉 = |0〉.
Thus,

σx|ψ(τ)〉 =
1√
2

(eiKBτ/h̄|1〉+ e−iKBτ/h̄|0〉

2.3 Now the qubit is allowed to evolve under H for an
additional time τ . What is the final qubit state?

We now apply the same evolution to the new state. You could do it again,
exactly as above. A faster way to get the same answer is to notice that under this
Hamiltonian, |0〉 acquired a phase eiKBτ/h̄, and |1〉 acquired a phase e−iKBτ/h̄.
This is always true because it is the action of the time evolution operator on
the basis. Thus, we can just apply these phase factors to our state again, and
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get

|ψ(2τ)〉 =
1√
2

(e−iKBτ/h̄eiKBτ/h̄|1〉+ eiKBτ/h̄e−iKBτ/h̄|0〉

=
|0〉+ |1〉√

2

=|+〉

Thus. this “echo” returns our state to the original state, regardless of the
magnitude of the magnetic field.

3 Circuits

Most of these can shown with just matrix multiplication. I will attach a Math-
ematica sheet with that algebra. By way of commentary, I only want to point
out that, when talking about two qubits, if apply some gate, U to one qubit,
and do nothing to the other, the appropriate matrix to write down is either
U⊗I or I⊗U depending on which qubit is being acted on. The math is worked
out in the last page of this document.

4 Single qubit gates

I will use the notation from the Lecture 4 notes on spin resonance for this part.

H1 = −1

2
gµB(B0σz +B1 sin(ωt)σx)

4.1 What unitary operator is generated by applying H1

for a time τ?

From the lecture notes, we have the rotating frame Hamiltonian

H ′(t) =

(
h̄ωL

2
σz + eiωLσzt/2H1(t)e−iωLσzt/2

)
We do the same trick as in the notes, writing

sin(ωt)σx =
1

2
((sin(ωt)σx + cos(ωt)σy) + (sin(ωt)σx cos(ωt)σy))

=
1

2
(eiωt−iπ/2σ+ + e−iωt+iπ/2σ− + e−iωt+iπ/2σ+ + eiωt−iπ/2σ−)

We now have to apply

eiωLσzt/2(eiωt−iπ/2σ+ +e−iωt+iπ/2σ−+e−iωt+iπ/2σ+ +eiωt−iπ/2σ−)e−iωLσzt/2
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to obtain

ei(ωL+ω)t−iπ/2σ+ + e−i(ωL+iω)t+iπ/2σ− + ei(ωL−ω)t+iπ/2σ+ + e−i(ω−ωL)t−iπ/2σ−

≈ ei(ωL−ω)t+iπ/2σ+ + e−i(ω−ωL)t−iπ/2σ−

= iσ+ − iσ−
= −σy

In the last two lines I assumed resonance, e.g. ω = ωL, and in the second line I
applied the rotating wave approximation.

This is the only part that differs from the lecture notes. Thus, we obtain

H ′(t) =

(
h̄ωL

2
σz −

h̄ωL
2
σz −

h̄gµBB1

2
σy

)
=− h̄gµBB1

2
σy

The unitary operation this generates (in the rotating frame) is just e−iHt/h̄ =
eigµBB1τσy/(2h̄)

4.2 What Hamiltonian can we use to generate U = cos θσx+
sin(θ)σy

For this, we can again draw inspiration from our old friend the Euler identity
for Pauli operators, noting that, with n̂ = (cos(θ), sin(θ), 0), we have:

eiαn̂·~σ = cosαI + i sin(α)(cos θσx + sin(θ)σy)

We thus need a Hamiltonian of the form A(cos θσx+sin(θ)σy). In the context

of NMR, we can take H = h̄gµBB
2 (cos θσx + sin(θ)σy). To generate the unitary,

we need to apply this Hamiltonian for a time to make α = gµBBτ
2 = π/2.

We are supposed to notice here that this problem is simply a generalization
of the previous part. Imagine that our field had the phase φ, such that

H1 = −1

2
gµB(B0σz +B1 sin(ωt+ φ)σx)

This is what we solved in the last part with φ = π/2. If we have a general
phase φ, the only thing that would change in our above derivation is that, when
we our interaction Hamiltonian would now be proportional to

eiφσ+ + e−iφσ−

= cosφσx − sinφσy

Thus, by changing the phase of the driving field, we change the axis about
which we rotate our qubit.
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In[27]:=

Problem 3
First, let’s build the matrices. For the controlled gates, we need to think about what happens to 
the basis vectors. For instance, CPHASE takes each vector to itself whenever the first qubit is 0, 
and applies Z if the first qubit is one. So |00> -> |00>, |01> -> |01>, |10> -> |10> and |11> -> 
-|11>.

In[59]:= H = H1 � HSqrt@2DLL * K
1 1

1 -1
O; H* Hadamard *L

H2 = KroneckerProduct@IdentityMatrix@2D, HD;

CPHASE =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 -1

;

CNOT =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

;

H* CNOT with control on 2nd qubit *L

rCNOT =

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

;

SWAP =

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

;

U = K
a b

c d
O;

(a)

In[44]:= H2.CPHASE.H2 �� MatrixForm
CNOT �� MatrixForm

Out[44]//MatrixForm=

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

Out[45]//MatrixForm=

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



(b)
In[46]:= H2.CNOT.H2 �� MatrixForm

CPHASE �� MatrixForm

Out[46]//MatrixForm=

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 -1

Out[47]//MatrixForm=

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 -1

(c)

In[57]:= CNOT.rCNOT.CNOT �� MatrixForm
SWAP �� MatrixForm

Out[57]//MatrixForm=

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

Out[58]//MatrixForm=

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

(d)

(i)

In[65]:= KroneckerProduct@IdentityMatrix@2D, UD �� MatrixForm

Out[65]//MatrixForm=

a b 0 0

c d 0 0

0 0 a b

0 0 c d

(ii)

In[66]:= KroneckerProduct@U, IdentityMatrix@2DD �� MatrixForm

Out[66]//MatrixForm=

a 0 b 0

0 a 0 b

c 0 d 0

0 c 0 d

2   p3.nb



(iii) For the controlled U, we apply U to the basis elements whenever the first qubit is in |1>

In[67]:= CU =

1 0 0 0

0 1 0 0

0 0 a c

0 0 b d

�� MatrixForm

Out[67]//MatrixForm=

1 0 0 0

0 1 0 0

0 0 a c

0 0 b d

(iv) Now for the control on the second qubit

In[68]:= rCU =

1 0 0 0

0 a 0 b

0 0 1 0

0 c 0 d

�� MatrixForm

Out[68]//MatrixForm=

1 0 0 0

0 a 0 b

0 0 1 0

0 c 0 d
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