
1 The Chernoff bound

1.1

Define the random variable Xi to represent the i-th coin toss. Let Xi = 1 when
the coin is heads, and Xi = 0 when the coin is tails. Then for n coin flips, the
sum 〈X〉 =

∑
〈Xi〉 = 2n/3.

If less than half of the flips come out heads, then X < n/2. We can use the
Chernoff bound to estimate the probability of such an event. We will use

Pr(X ≤ (1− ε)µ) ≤ exp(−ε2µ/2)

We need to find ε. We set n/2 = (1− ε)µ = (1− ε)2n/3, and find ε = 1/4. Then

Pr(X ≤ n/2) ≤ exp(− 2n

2 · 16 · 3
)

= exp(−n/48)

n =− 48 ln(Pr(X ≤ n/2))

Setting Pr(X ≤ n/2) = 10−4, we estimate n ≈ 442.

1.2

We can also solve the problem exactly. The probability of a particular length n
sequence of flips containing exactly k heads is just (2/3)k(1/3)n−k. There are,
however,

(
n
k

)
such sequences all containing k heads, so the total probability of

finding exactly k heads in n flips is

P (k) =

(
n

k

)(
2

3

)k (
1

3

)n−k
and then

P (X < n/2) =

n/2−1∑
k=0

(
n

k

)(
2

3

)k (
1

3

)n−k
Plugging this sum into Mathematica to evaluate numerically gives n ≈ 110

for P (X < n/2) = 10−4.

2 The quantum half-adder

2.1

Adding modulo-two works more or less like adding in base 10. If I add two one-
bit numbers a and b, I need to carry a bit only if both a and b are 1. Another
way of saying this is that the carry bit is a ∗ b which equals 1 only if both a and
b are 0.
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If I want to add two two bit numbers, Aa and Bb, the first bit from the
addition just gives a + b. The carry is a ∗ b, so the second bit in the addition
is a ∗ b + A + B. You can tell by inspection that I will need a carry bit if any
two of (a ∗ b), B, and A are 1. A way of writing this is that the carry bit is
(A ∗B +A ∗ a ∗ b+B ∗ a ∗ b).

2.2

LATEX-ing quantum circuits (or any circuits for that matter) can be a pain, so
you’ll have to live with my hand-drawn sketch of the two-bit adder circuit.

2.3

We need 8 total qubits. 4 for representing the input, and 4 ancillary qubits.

2.4

The tracking is basically done on the figure.

2.5

If one adds 10 to 11, the output of the circuit is, in descending order vis-a-vis
the figure:

|0〉|1〉|0〉|0〉|1〉|0〉|1〉|0〉

3 Universality

3.1

We can do this with just a simple Taylor expansion to second order in ε.

UX = exp iεX ≈ 1 + iεX − (ε2/2)X2

UY = exp iεY ≈ 1 + iεY − (ε2/2)Y 2

Note that X2 = Y 2 = I. Now get ready for a bunch of algebra. To simplify
things, I will drop everything higher order than ε2 as soon as possible. Let’s do
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this piece by piece.

UY UX ≈ (1 + iεY − ε2/2)(1 + iεX − ε2/2)

≈ (1 + iε(X + Y )− ε2Y X − ε2)

U†XUY UX ≈ (1− iεX − ε2/2)(1 + iε(X + Y )− ε2Y X − ε2)

≈ 1 + iε(X + Y )− ε2Y X − ε2 − iεX + ε2X(X + Y )− ε2/2
= 1 + iεY + ε2[X,Y ]− ε2/2
= 1 + iεY + 2iε2Z − ε2/2

U†Y U
†
XUY UX ≈ (1− iεY − ε2/2)(1 + iεY + 2iε2Z − ε2/2)

≈ 1 + iεY + 2iε2Z − ε2/2− iεY + ε2Y 2 − ε2/2
= 1 + 2iε2Z

≈ exp(2iε2Z)

3.2

4 Measurement

4.1

In general, the measurement operators for some observable are projectors onto
the eigenvectors of the observable. In our case, our observable is

n̂ · ~σ =

(
nz nx − iny

nx + iny −nz

)
=

(
cos(θ) sin(θ)(cos(φ)− i sin(φ))

sin(θ)(cos(φ) + i sin(φ)) − cos(θ)

)
=

(
cos(θ) e−iφ sin(θ)

eiφ sin(θ) − cos(θ)

)
with the constraint that n̂ is a unit vector with real coefficients. Since a later
part of this problem wants us to use spherical coordinates, I will go ahead and
write n̂ in polar coordinates from the start.

Diagonalizing this matrix isn’t hard, but I’m not good at algebra so we’ll just
plug it into Mathematica to save us the heartbreak. There are two eigenvectors.
One has eigenvalue +1, which I denote |n+〉, and one has eigenvalue −1, which
I’ll call |n−〉. The answers are:

|n+〉 =
1√

cot2(θ/2) + 1

(
e−iφ cot(θ/2)

1

)
|n−〉 =

1√
tan2(θ/2) + 1

(
−e−iφ tan(θ/2)

1

)
The measurement operators are |n+〉〈n+ | and |n−〉〈n− |.
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4.2

For this part, we need to know |〈0|n+〉|2. This is just

|〈0|n+〉|2 =
cot2(θ/2)

cot2(θ/2) + 1

I’ve plotted this probability as a function of θ from 0 to π. This has the behavior
we should expect: if θ = 0, |n+〉 = |0〉 up to a phase. If θ = π, |n+〉 = |1〉, and
is completely orthogonal to our initial state.
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4.3

After the measurement, the state is either |n+〉, or |n−〉, depending on the
measurement result.
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