
CS191 – Fall 2014
Homework 5 solutions

1. The six state protocol. Let the tuple (a, b, e) represent the basis that Alice, Bob and Eve measure/prepare in.
After sifting the only events that are kept (out of the 27 possible events) have one of the following combinations
of measurements and preparations:

(Z,Z,Z), (X,X,X), (Y, Y, Y ), (Z,Z, Y ), (Z,Z,X), (X,X,Z), (X,X, Y ), (Y, Y,X), (Y, Y, Z)

Out of these, the occurrence of any of the first three cannot be detected by Alice and Bob in the error rate
estimation step. Therefore, the probability of having a detectable intervention by Eve is p1 = 6/9. Then, the
probability of creating a disagreement is p2 = 1/2 since even if Eve measured in the wrong basis and sent a
state orthogonal to the one Alice sent, Bob will still have probability 1/2 of getting a measurement outcome
that is the same as the state Alice sent. Therefore the error rate that Alice and Bob will estimate in this case
where Eve attacks every qubit individually with the intercept resend attack is ε = p1 × p2 = 1/3.

2. Entanglement-based protocol.

(a) To write |Ψ〉 in the new basis, we write each |0〉i = 1√
2
(|+〉i + |−〉i and each |1〉i = 1√

2
(|+〉i − |−〉i, for

i = A,B. Then combining terms and canceling, we get:

|Ψ〉 =
1√
2

(|+〉A ⊗ |+〉B + |−〉A ⊗ |−〉B)

(b) Note that both Alice’s measurement result and Bob’s measurement result are random events if they measure
in different bases. If Alice and Bob measure in the same basis, the outcome is still random, but they are
guaranteed to get the same outcome. I’ve made random choices in cases where the outcome is random and
so the following table may not be exactly the same as yours.

Alice basis choice σz σx σx σz σz σz σx σz σx σz

Bob basis choice σx σz σx σx σz σx σz σz σx σz

Alice measurement result |0〉 |+〉 |−〉 |0〉 |1〉 |1〉 |−〉 |0〉 |+〉 |1〉
Alice bit value 0 0 1 0 1 1 1 0 0 1

Bob measurement result |+〉 |0〉 |−〉 |−〉 |1〉 |+〉 |0〉 |0〉 |+〉 |1〉
Bob bit value 0 0 1 1 1 0 0 0 0 1

Keep after sifting? No No Yes No Yes No No Yes Yes Yes

(c) Now Alice and Bob get a non-ideal, or noisy, state

ρ =
p

4
I4 + (1− p) |Ψ〉 〈Ψ| ,

Then we are told that Alice measures in the σx basis and gets the result |+〉. To calculate the possible
results that Bob will get we need to calculate the post-measurement state after Alice’s result. Recall that
the post-measurement state is determined as:

ρPM =
PiρPi

tr (PiρPi)
,

where Pi is a projector onto the eigenspace corresponding to the measurement result that was obtained.

In this question Pi = |+〉A 〈+| ⊗ IB , which is a projector onto the |+〉 state on Alice’s qubit (since this is
the result she got) and the identity on Bob’s qubit indicates that nothing is done on it. Calculating the
numerator for the post measurement state,

(|+〉A 〈+| ⊗ IB)ρ(|+〉A 〈+| ⊗ IB)

=
p

4
(|+〉A 〈+| ⊗ IB)I4(|+〉A 〈+| ⊗ IB) + (1− p)(|+〉A 〈+| ⊗ IB) |Ψ〉 〈Ψ| (|+〉A 〈+| ⊗ IB)

=
p

4
|+〉A 〈+| ⊗ IB +

(1− p)
2

|+〉A 〈+| ⊗ |+〉B 〈+| , (1)



2

where the second term was arrived at by expanding |Ψ〉 〈Ψ| as

|Ψ〉 〈Ψ| =
1

2

(
|+〉A 〈+| ⊗ |+〉B 〈+|

+ |+〉A 〈−| ⊗ |+〉B 〈−|
+ |−〉A 〈+| ⊗ |−〉B 〈+|

+ |−〉A 〈−| ⊗ |−〉B 〈−|
)
.

Having done this it should be clear that only one of those components (the first one) will survive when we
project with Pi from the left and right.

So Eq. (1) is the numerator for the post measurement state. To normalize it we need to find the denomi-
nator, which is the trace of Eq. (1). Some useful properties of the trace to keep in mind are:

tr (ABC) = tr (CAB) = tr (BCA) Cyclic property

tr (A+B) = tr (A) + tr (B) Linearity

tr (A⊗B) = tr (A)tr (B) Behavior under tensor product

Using these,

tr (
p

4
|+〉A 〈+| ⊗ IB +

(1− p)
2

|+〉A 〈+| ⊗ |+〉B 〈+|)

=
p

4
tr (|+〉A 〈+| ⊗ IB) +

(1− p)
2

tr (|+〉A 〈+| ⊗ |+〉B 〈+|)

=
p

2
+

(1− p)
2

=
1

2

Therefore the post measurement state is:

ρPM =
p

2
|+〉A 〈+| ⊗ IB + (1− p) |+〉A 〈+| ⊗ |+〉B 〈+| (2)

Now we can answer the questions about Bob’s possible outcomes.

i. Suppose Bob also measures in the σx basis. What are the probabilities of his possible outcomes?
We know his outcomes are |+〉 or |−〉. To find their probabilities we recall that the probability of a
particular outcome with projector Pi, given a state ρ, is:

tr (Piρ) = tr (PiρPi).

(Why are these equal? You should make sure you understand why). This time we are asking for
probabilities for Bob’s measurement outcomes, so the relevant Pi are

P+ = IA ⊗ |+〉B 〈+|
P− = IA ⊗ |−〉B 〈−| .

Therefore,

Pr{+} = tr (P+ρ
PM ) =

p

2
tr (|+〉A 〈+| ⊗ |+〉B 〈+|) + (1− p)tr (|+〉A 〈+| ⊗ |+〉B 〈+|) =

p

2
+ (1− p)

= 1− p

2
,

Pr{−} = tr (P−ρ
PM ) =

p

2
tr (|+〉A 〈+| ⊗ |−〉B 〈−|) + (1− p)(0)

=
p

2
.

Note that due to the noise in the state (proportional to p), Bob’s result is not guaranteed to be perfectly
correlated to Alice’s any longer.
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ii. Now suppose Bob measures in the σz basis. What are the probabilities for his possible outcomes? In
this case his outcomes are |0〉 or |1〉, and the relevant measurement operators are

P0 = IA ⊗ |0〉B 〈0| ,
P1 = IA ⊗ |1〉B 〈1| .

Therefore,

Pr{0} = tr (P0ρ
PM ) =

p

2
tr (|+〉A 〈+| ⊗ |0〉B 〈0|) + (1− p)tr (|+〉A 〈+| ⊗ |0〉B 〈+| 〈0|+〉)

=
p

2
+ (1− p)1

2
=

1

2
,

Pr{1} = tr (P1ρ
PM ) =

p

2
tr (|+〉A 〈+| ⊗ |1〉B 〈1|) + (1− p)tr (|+〉A 〈+| ⊗ |1〉B 〈+| 〈1|+〉)

=
p

2
+ (1− p)1

2
=

1

2
.

So if Alice and Bob choose the wrong basis, the noise in the entangled state doesn’t affect the proba-
bilities of measurement outcome results.

3. Universal hashing for privacy amplification. Alice and Bob share the binary string x =
(1, 0, 0, 1, 1, 1, 0, 1, 0, 0)T, and decide on the Topelitz hashing matrix:

1 0 1 0 0 0 0 1 1 0

0 1 0 1 0 0 0 0 1 1

0 0 1 0 1 0 0 0 0 1

0 0 0 1 0 1 0 0 0 0

0 0 0 0 1 0 1 0 0 0

1 0 0 0 0 1 0 1 0 0

0 1 0 0 0 0 1 0 1 0


.

(a) Alice and Bob’s privacy amplified bit string is

y = Tx

= (0, 1, 1, 0, 1, 1, 0)T

(b) Suppose Eve’s bit string she has eavesdropped is x′ = (1, 1, 0, 1, 0, 1, 1, 1, 1, 0)T. We’ve flipped four random
bits of x to get this. If Eve were to hash this eavesdropped string, she would get

y′ = Tx′

= (1, 1, 0, 0, 1, 1, 1)T

The hamming distance between y and y′ is 3.

(c) Now we will flip fewer bits in Eve’s bit string to give her more information about the string Alice and Bob
share.

i. l = 3: x′ = (0, 0, 0, 1, 0, 1, 0, 1, 1, 0)T ⇒ y′ = Tx′ = (0, 0, 0, 0, 0, 0, 1)T. The hamming distance between
y and y′ in this case is 5.

ii. l = 2: x′ = (1, 0, 0, 1, 1, 0, 1, 1, 0, 0)T ⇒ y′ = Tx′ = (0, 1, 1, 1, 0, 0, 1)T. The hamming distance between
y and y′ in this case is 4.

iii. l = 1: x′ = (1, 0, 0, 0, 1, 1, 0, 1, 0, 0)T ⇒ y′ = Tx′ = (0, 0, 1, 1, 1, 1, 0)T. The hamming distance between
y and y′ in this case is 2.

We see that even when one bit is flipped, it is difficult for Eve to have full knowledge of the privacy amplified
bit string. Of course, note that if you flip different bits to obtain x′ in each of the cases above you may
compute different hamming distances. But the chance that y and y′ have zero hamming distance will be
very small.


