C 191 - FALL 2014 Homework 8: due in lecture Nov. 19

1. Unitarity of Fourier Transform

The (classical) Fourier transform $\mod N$ is the $N \times N$ matrix given by

$$FT_N = \frac{1}{\sqrt{N}} \begin{pmatrix} 1 & 1 & 1 & \cdots & 1\\ 1 & \omega & \omega^2 & \cdots & \omega^{N-1}\\ 1 & \omega^2 & \omega^4 & \cdots & \omega^{2(N-1)}\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & \omega^{N-1} & \omega^{2(N-1)} & \cdots & \omega^{(N-1)^2} \end{pmatrix} ,$$

where $\omega = e^{2\pi i/N}$ is a primitive Nth root of unity. So the *i*, *j*'th element of FT_N is $\frac{1}{\sqrt{N}}\omega^{ij}$, for $i, j = 0, \ldots, N-1$. Show that FT_N is unitary by evaluating the inner product between the *i*th and *j*th columns of FT_N , i.e., show that $\langle i | FT_N^{\dagger}FT_N | j \rangle = \delta_{ij} \equiv \begin{cases} 1 \text{ if } i = j \\ 0 \text{ if } i \neq j \end{cases}$.

Your calculation will demonstrate a very important and useful result, namely that for ω a primitive Nth root of unity (i.e., $\omega^N = 1$ but $\omega^m \neq 1$ for 0 < m < N),

$$\sum_{k=0}^{N-1} \omega^{kj} = \begin{cases} N & \text{if } j = 0 \mod N \\ 0 & \text{otherwise} \end{cases}$$

2. Fourier Transforms and the uncertainty principle

The uncertainty principle bounds how well a quantum state can be localized simultaneously in the standard basis and the Fourier basis. In this question, we will derive an uncertainty principle for a discrete system of n-qubit.

Let $|\psi\rangle = \sum_{x \in \{0,1\}^n} \alpha_x |x\rangle$ be the state of an *n*-qubit system. A measure of the spread of $|\psi\rangle$ is $S(|\psi\rangle) \equiv \sum_x |\alpha_x|$. For example, for a completely localized state $|\psi\rangle = |y\rangle$ ($y \in \{0,1\}^n$), the spread is $S(|\psi\rangle) = 1$. For a maximally spread state $|\psi\rangle = \frac{1}{\sqrt{2^n}} \sum_x |x\rangle$, $S(|\psi\rangle) = 2^n \cdot \frac{1}{\sqrt{2^n}} = \sqrt{2^n}$.

a) Prove that for any quantum state $|\psi\rangle$ on n qubits, $S(|\psi\rangle) \leq 2^{n/2}$. (Hint: use the Cauchy-Schwarz inequality, $\langle v | w \rangle \leq ||v|| \cdot ||w||$.)

b) Suppose that $|\alpha_x| \leq a$ for all x. Prove that $S(|\psi\rangle) \geq \frac{1}{a}$. (Hint: think about normalization....)

c) Show that $H^{\otimes n} |x\rangle = \sum_{y} (-1)^{x \cdot y} |y\rangle \ (x \cdot y \equiv \sum_{i=1}^{n} x_i y_i).$

d) Using c), the action of $H^{\otimes n}$ on $|\psi\rangle$ can be written as $H^{\otimes n}|\psi\rangle = \sum_x \beta_x |x\rangle$, where $\beta_x = \frac{1}{2^{n/2}} \sum_y (-1)^{x \cdot y} \alpha_y$. Use this to prove that for all y, $|\beta_y| \leq \frac{1}{2^{n/2}} S(|\psi\rangle)$. (Hint: use the triangle inequality.)

d) Prove the uncertainty relation $S(|\psi\rangle)S(H^{\otimes n}|\psi\rangle) \ge 2^{n/2}$. Justify why it makes sense to call this an uncertainty relation.