1 Unitarity of a Fourier Transform

The Fourier transform $\bmod N$ is the $N \times N$ matrix given by

$$
F T_{N}=\frac{1}{\sqrt{N}}\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \tag{1}\\
1 & \omega & \omega^{2} & \cdots & \omega^{N-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(N-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{N-1} & \omega^{2(N-1)} & \cdots & \omega^{(N-1)^{2}}
\end{array}\right)
$$

where $\omega=e^{2 \pi i / N}$ is a primitive N th root of unity. That is, the i, j 'th element of $F T_{N}$ is $\frac{1}{\sqrt{N}} \omega^{i j}$, for $i, j=0, \ldots, N-1$.

Equivalently, in ket notation, for $j \in\{0,1, \ldots, N-1\}, F T_{N}|j\rangle=\frac{1}{\sqrt{N}} \sum_{i=0}^{N-1} \omega^{i j}|i\rangle$.
We need to check the inner product between the i th and j th columns of $F T_{N}$, that $\langle i| F T_{N}^{\dagger} F T_{N}|j\rangle=\delta_{i j} \equiv\left\{\begin{array}{l}1 \text { if } i=j \\ 0 \text { if } i \neq j\end{array}\right.$. Indeed, this inner product is

$$
\begin{equation*}
\frac{1}{N} \sum_{k=0}^{N-1} \overline{\omega^{i k}} \omega^{j k}=\frac{1}{N} \sum_{k=0}^{N-1} \omega^{k(j-i)} \tag{2}
\end{equation*}
$$

This is a geometric series with ratio between terms ω^{j-i} and so can easily be evaluated. If $i=j \bmod N$, then each term is $\omega^{0}=1$, so the inner product is $N / N=1$. If $i \neq j$, then the sum is

$$
\begin{equation*}
1+\omega^{j-i}+\omega^{2(j-i)}+\cdots+\omega^{(N-2)(j-i)}+\omega^{(N-1)(j-i)} \tag{3}
\end{equation*}
$$

Multiplying the sum by $\omega^{i-j} \neq 1$ gives

$$
\begin{equation*}
\omega^{j-i}+\omega^{2(j-i)}+\omega^{3(j-i)}+\cdots+\omega^{(N-1)(j-i)}+\omega^{N(j-i)} \tag{4}
\end{equation*}
$$

But $\omega^{N(j-i)}=\left(\omega^{N}\right)^{j-i}=1$, so we have just rearranged the terms of the summation; the sum itself doesn't change when multiplied by ω^{j-i}. Therefore the sum is zero, as claimed.

2 Fourier Transforms and the uncertainty principle

a) Prove that for any quantum state $|\psi\rangle$ on n qubits, $S(|\psi\rangle) \leq 2^{n / 2}$.

Answer: We need to show that if $\sum_{x \in\{0,1\}^{n}}\left|\alpha_{x}\right|^{2}=1$, then $\sum_{x}\left|\alpha_{x}\right| \leq$ $2^{n / 2}$. Using the Cauchy-Schwarz inequality $\langle v \mid w\rangle \leq\|v\| \cdot\|w\|$, we get

$$
\begin{aligned}
\sum_{x}\left|\alpha_{x}\right| & =\sum_{x}\left(\left|\alpha_{x}\right| \cdot 1\right) \\
& \leq\left(\sum_{x}\left|\alpha_{x}\right|^{2}\right)^{1 / 2}\left(\sum_{x} 1^{2}\right)^{1 / 2} \\
& =1 \cdot 2^{n / 2}=2^{n / 2}
\end{aligned}
$$

with equality iff $\left|\alpha_{x}\right|=1 / 2^{n / 2}$ for all x.
(b) Answer: Using the normalization condition, $1=\sum_{x}\left|\alpha_{x}\right|^{2} \leq \sum_{x} a\left|\alpha_{x}\right|=$ $a S(|\psi\rangle)$. (Notice that this inequality is an equality iff all α_{x} are zero or exactly a - that is, to minimize the spread, concentrate the probability mass as much as possible while still satisfying the constraint $\left|\alpha_{x}\right| \leq a$.)
(c)

$$
\begin{aligned}
H^{\otimes n}|x\rangle & =\bigotimes_{i=1}^{n}\binom{|0\rangle+|1\rangle \text { if } x_{i}=0}{|0\rangle-|1\rangle \text { if } x_{i}=1} \\
& =\sum_{z}\left(\bigotimes_{i=1}^{n} \begin{array}{r}
\left|z_{i}\right\rangle \text { if } x_{i}=0 \text { or } z_{i}=0 \\
-\left|z_{i}\right\rangle \text { if } x_{i}=1 \text { and } z_{i}=1
\end{array}\right) \\
& =\sum_{z}\left(\prod_{i=1}^{n}(-1)^{x_{i} z_{i}}\right)|z\rangle \\
& =\sum_{z}(-1)^{x \cdot z}|z\rangle
\end{aligned}
$$

(d) Use (c) to prove that for all $y,\left|\beta_{y}\right| \leq \frac{1}{2^{n / 2}} S(|\psi\rangle)$.

Answer: Using the triangle inequality $|a+b| \leq|a|+|b|$,

$$
\begin{aligned}
\left|\beta_{y}\right| & =\frac{1}{2^{n / 2}}\left|\sum_{y}(-1)^{x \cdot y} \alpha_{y}\right| \\
& \leq \frac{1}{2^{n / 2}} \sum_{y}\left|(-1)^{x \cdot y} \alpha_{y}\right| \\
& =\frac{1}{2^{n / 2}} \sum_{y}\left|\alpha_{y}\right| \\
& =\frac{1}{2^{n / 2}} S(|\psi\rangle) .
\end{aligned}
$$

(e) Prove the uncertainty relation $S(|\psi\rangle) S\left(H^{\otimes n}|\psi\rangle\right) \geq 2^{n / 2}$. Justify why it makes sense to call this an uncertainty relation.

Answer: By part d, $\left|\beta_{y}\right| \leq \frac{1}{2^{n / 2}} S(|\psi\rangle)$ for all y. So by part b, $S\left(H^{\otimes n}|\psi\rangle\right) \geq$ $2^{n / 2} / S(|\psi\rangle)$, which is the desired inequality.

This is an uncertainty relation because it gives a tradeoff between the spread in one basis and the spread in another. For example, if a state is wellconcentrated in the standard basis, then it has high spread - and therefore high uncertainty - in the Fourier basis.

