1 Unitarity of a Fourier Transform

The Fourier transform mod N is the $N \times N$ matrix given by

$$FT_N = \frac{1}{\sqrt{N}} \begin{pmatrix} 1 & 1 & 1 & \cdots & 1\\ 1 & \omega & \omega^2 & \cdots & \omega^{N-1}\\ 1 & \omega^2 & \omega^4 & \cdots & \omega^{2(N-1)}\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & \omega^{N-1} & \omega^{2(N-1)} & \cdots & \omega^{(N-1)^2} \end{pmatrix} , \qquad (1)$$

where $\omega = e^{2\pi i/N}$ is a primitive Nth root of unity. That is, the i, j'th element of FT_N is $\frac{1}{\sqrt{N}}\omega^{ij}$, for $i, j = 0, \dots, N-1$.

Equivalently, in ket notation, for $j \in \{0, 1, ..., N-1\}$, $FT_N|j\rangle = \frac{1}{\sqrt{N}} \sum_{i=0}^{N-1} \omega^{ij} |i\rangle$. We need to check the inner product between the *i*th and *j*th columns of FT_N , that $\langle i|FT_N^{\dagger}FT_N|j\rangle = \delta_{ij} \equiv \begin{cases} 1 \text{ if } i=j\\ 0 \text{ if } i\neq j \end{cases}$. Indeed, this inner product is

$$\frac{1}{N} \sum_{k=0}^{N-1} \overline{\omega^{ik}} \omega^{jk} = \frac{1}{N} \sum_{k=0}^{N-1} \omega^{k(j-i)}$$
(2)

This is a geometric series with ratio between terms ω^{j-i} and so can easily be evaluated. If $i = j \mod N$, then each term is $\omega^0 = 1$, so the inner product is N/N = 1. If $i \neq j$, then the sum is

$$1 + \omega^{j-i} + \omega^{2(j-i)} + \dots + \omega^{(N-2)(j-i)} + \omega^{(N-1)(j-i)} .$$
(3)

Multiplying the sum by $\omega^{i-j} \neq 1$ gives

$$\omega^{j-i} + \omega^{2(j-i)} + \omega^{3(j-i)} + \dots + \omega^{(N-1)(j-i)} + \omega^{N(j-i)} .$$
(4)

But $\omega^{N(j-i)} = (\omega^N)^{j-i} = 1$, so we have just rearranged the terms of the summation; the sum itself doesn't change when multiplied by ω^{j-i} . Therefore the sum is zero, as claimed.

2 Fourier Transforms and the uncertainty principle

a) Prove that for any quantum state $|\psi\rangle$ on *n* qubits, $S(|\psi\rangle) \leq 2^{n/2}$.

Answer: We need to show that if $\sum_{x \in \{0,1\}^n} |\alpha_x|^2 = 1$, then $\sum_x |\alpha_x| \leq 1$ $2^{n/2}$. Using the Cauchy-Schwarz inequality $\langle v|w\rangle \leq ||v|| \cdot ||w||$, we get

$$\sum_{x} |\alpha_{x}| = \sum_{x} (|\alpha_{x}| \cdot 1)$$
$$\leq \left(\sum_{x} |\alpha_{x}|^{2}\right)^{1/2} \left(\sum_{x} 1^{2}\right)^{1/2}$$
$$= 1 \cdot 2^{n/2} = 2^{n/2} ,$$

with equality iff $|\alpha_x| = 1/2^{n/2}$ for all x. (b) **Answer**: Using the normalization condition, $1 = \sum_x |\alpha_x|^2 \le \sum_x a |\alpha_x| = aS(|\psi\rangle)$. (Notice that this inequality is an equality iff all α_x are zero or exactly a – that is, to minimize the spread, concentrate the probability mass as much as possible while still satisfying the constraint $|\alpha_x| \leq a$.)

$$H^{\otimes n}|x\rangle = \bigotimes_{i=1}^{n} \left(\begin{array}{c} |0\rangle + |1\rangle \text{ if } x_{i} = 0\\ |0\rangle - |1\rangle \text{ if } x_{i} = 1 \end{array} \right)$$
$$= \sum_{z} \left(\bigotimes_{i=1}^{n} \begin{array}{c} |z_{i}\rangle \text{ if } x_{i} = 0 \text{ or } z_{i} = 0\\ -|z_{i}\rangle \text{ if } x_{i} = 1 \text{ and } z_{i} = 1 \end{array} \right)$$
$$= \sum_{z} \left(\prod_{i=1}^{n} (-1)^{x_{i}z_{i}} \right)|z\rangle$$
$$= \sum_{z} (-1)^{x \cdot z}|z\rangle$$

(d) Use (c) to prove that for all y, $|\beta_y| \leq \frac{1}{2^{n/2}}S(|\psi\rangle)$. **Answer**: Using the triangle inequality $|a+b| \leq |a|+|b|$,

$$|\beta_y| = \frac{1}{2^{n/2}} |\sum_y (-1)^{x \cdot y} \alpha_y|$$

$$\leq \frac{1}{2^{n/2}} \sum_y |(-1)^{x \cdot y} \alpha_y|$$

$$= \frac{1}{2^{n/2}} \sum_y |\alpha_y|$$

$$= \frac{1}{2^{n/2}} S(|\psi\rangle) .$$

(e) Prove the uncertainty relation $S(|\psi\rangle)S(H^{\otimes n}|\psi\rangle) \geq 2^{n/2}$. Justify why it makes sense to call this an uncertainty relation.

Answer: By part d, $|\beta_y| \leq \frac{1}{2^{n/2}} S(|\psi\rangle)$ for all y. So by part b, $S(H^{\otimes n}|\psi\rangle) \geq 2^{n/2}/S(|\psi\rangle)$, which is the desired inequality.

This is an uncertainty relation because it gives a tradeoff between the spread in one basis and the spread in another. For example, if a state is well-concentrated in the standard basis, then it has high spread – and therefore high uncertainty – in the Fourier basis.