SUPERCONDUCTING QUBITS

Theory Collaborators

Prof. A. Blais (UdS) Prof. A. Clerk (McGill) Prof. L. Friedland (HUJI) Prof. A.N. Korotkov (UCR) Prof. S.M. Girvin (Yale) Prof. L. Glazman (Yale) Prof. A. Jordan (UR) Dr. M. Sarovar (Sandia) Prof. B. Whaley (UCB)

Quantum Nanoelectronics Laboratory **Department of Physics, UC Berkeley**

MICROWAVE OPTICS & SUPERCONDUCTING ARTIFICAL ATOMS

4-8 GHz LINEAR CAVITIES

THE NON-DISSIPATIVE JOSEPHSON JUNCTION OSCILLATOR

THE DAWN OF COHERENCE

 $T_1, T_2 \sim 1 \text{ ns}$ Al / AlOx / Al

Coherent control of macroscopic quantum states in a single-Cooper-pair box

Y. Nakamura*, Yu. A. Pashkin† & J. S. Tsai*

* NEC Fundamental Research Laboratories, Tsukuba, Ibaraki 305-8051, Japan † CREST, Japan Science and Technology Corporation (JST), Kawaguchi, Saitama 332-0012, Japan T₁, T₂ ~ 100 μs

AI / AIOx / AI

Observation of High Coherence in Josephson Junction Qubits Measured in a Three-Dimensional Circuit QED Architecture

 Hanhee Paik,¹ D. I. Schuster,^{1,2} Lev S. Bishop,^{1,3} G. Kirchmair,¹ G. Catelani,¹ A. P. Sears,¹ B. R. Johnson,^{1,4} M. J. Reagor,¹ L. Frunzio,¹ L. I. Glazman,¹ S. M. Girvin,¹ M. H. Devoret,¹ and R. J. Schoelkopf¹
 ¹Department of Physics and Applied Physics, Yale University, New Haven, Connecticut 06520, USA
 ²Department of Physics and James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
 ³Joint Quantum Institute and Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, Maryland 20742, USA
 ⁴Raytheon BBN Technologies, Cambridge, Massachusetts 02138, USA

SUPERCONDUCTING TRANSMON QUBIT

$$\omega_{01} \simeq \frac{1}{\sqrt{L_J C}}$$

$$\omega_{01} \neq \omega_{12}$$

J. Koch et al., Physical Review A 76, 042319 (2007)

- Tunable qubit frequency
- ω₀₁ ~ 5-8 GHz
- T₁ , T₂ ~ 100s μ s

Josephson tunnel junctions

A DET THE

500 nm

EXPERIMENTAL SETUP

SYSTEM NOISE TEMPERATURE

PARAMETRIC AMPLIFICATION

M. J. Hatridge et al., Phys. Rev. B 83, 134501 (2011)

Tunnel junction

Al Lumped LC Resonator 4-8 GHz Coupled to 50 Ω Q = 26 Nb

ground plane

Capacitor

Capacitor

0

-

~

100 µm

Flux

line

4th GENERATION CRYOPACKAGE

NbTi/CPF 8 twisted pairs

Manganin/CPF

50 mK

20 mK

NbTi/CPF 8 twisted pairs

circulator 1-2 GHz

* *

10.00

.

.

.

WEAK MEASUREMENT

• SINGLE QUBIT EXPERIMENTS

- Individual Quantum Trajectories
- Distribution of Quantum Trajectories
- TWO QUBIT MEASUREMENTS

Remote Entanglement

WEAK MEASUREMENT

QUBIT STATE ENCODED IN PHASE SHIFT

MEASUREMENT: COUPLE TO E-M FIELD OF CAVITY (Jaynes-Cummings)

STRONG vs. WEAK MEASUREMENT

Strong

READOUT/TOMOGRAPHY

MEASUREMENT STRENGTH

$$S = \frac{\Delta V^2}{\sigma^2}$$

$$S = \frac{64\tau\chi^2\bar{n}\eta}{\kappa}$$

τ: measurement time χ : dispersive shift \overline{n} : photon number

κ: cavity decay rate η: detector efficiency

$$\eta = 0.49$$

WHAT DO YOU DO WITH THIS WEAK MEASUREMENT SIGNAL?

 Control Signal for Feedback (eg. Stabilized Rab Osc.)

Construct Trajectories

 Feed it to Another Qubit to Generate Entanglement

CAN WE TRACK A PURE STATE ON THE SURFACE OF THE BLOCH SPHERE?

OBSERVING SINGLE QUANTUM TRAJECTORIES OF A SUPERCONDUCTING QUBIT

K. Murch et al., Nature 502, 211 (2013).

BACKACTION OF SINGLE QUADRATURE MEASUREMENT

INDIVIDUAL TRAJECTORIES

- Prepare state along +*x*
- Continuous weak measurement
- Integrated readout is trajectory

BAYESIAN UPDATE

WEAK MEASUREMENT OF THE QUBIT STATE

2

- Initial state along +X
- Measure Z (phase quadrature)

WANT TO **EVALUATE:**

$$\begin{array}{l} \langle \sigma_Z \rangle | V_m \stackrel{\text{def}}{=} Z^Z \\ \langle \sigma_X \rangle | V_m \stackrel{\text{def}}{=} X^Z \\ \langle \sigma_Y \rangle | V_m \stackrel{\text{def}}{=} Y^Z \end{array}$$

BAYES **RULE:**

$$Z^{Z} = \tanh(\frac{\gamma m^{2}}{2\Delta V})$$
$$X^{Z} = \sqrt{1 - \langle \sigma_{Z} \rangle^{2}} e^{-\gamma \tau}$$
$$\gamma = 8\chi^{2} \bar{n} (1 - \eta) / \kappa + 1 / T_{2}^{*}$$

V.S.

TOMOGRAPHIC **PROCEDURE:**

WEAK MEASUREMENT OF THE PHOTON NUMBER

REALTIME TRACKING

- Prepare qubit along X axis
- Evolve under measurement

- Use Bayes rule to update our guess of the qubit state (dots)
- Perform tomography for each time step (solid)

DISTRIBUTION OF QUANTUM TRAJECTORIES

MEASUREMENT INDUCED DYNAMICS ONLY

MEASUREMENT w. POSTSELECTION

Initial State along +xFinal State at z = -0.85

Can Identify Most Likely Path

Predict with Theory?

EXTREMIZING THE QUANTUM ACTION

Classical Example: Kramer's Escape

- Consider paths to saddle point Λ
- Establish canonical phase space (p,q)
- Define action S
- Calculate most favorable path, etc...

Quantum Case for Pre/Post-Selected Trajectories:

A. Chantasri, J. Dressel, A.N. Jordan, PRA 2013

- Consider paths connecting quantum state
 q_I →*q_F*
- Double quantum state space (\rightarrow canonical)
- Express joint probability of measurement & trajectories as path integral
- Minimize action
 → ODE for equation of motion

$$\mathcal{P} = \delta^d (\boldsymbol{q}_0 - \boldsymbol{q}_I) \delta^d (\boldsymbol{q}_n - \boldsymbol{q}_F) \prod_{k=0}^{n-1} P(\boldsymbol{q}_{k+1}, r_k | \boldsymbol{q}_k).$$

$$\mathcal{P} = \int \mathcal{D}\boldsymbol{p} \, e^{\mathcal{S}} = \int \mathcal{D}\boldsymbol{p} \, \exp\left[\int_{0}^{T} \mathrm{d}t \left(-\boldsymbol{p} \cdot \dot{\boldsymbol{q}} + \mathcal{H}[\boldsymbol{q}, \boldsymbol{p}, r]\right)\right]$$

- Calculate statistical distributions
- Treat case of measurement backaction
 with control pulses Ω (Schrödinger dynamics)

MEASUREMENT w. POSTSECLECTION: THEORY

QUANTUM TRAJECTORIES WITH RABI DRIVING

TRAJECTORIES w. RABI DRIVE: TOMOGRAPHY

NO RABI DRIVE

- Trajectories w. Rabi drive: two step update (master eqn. + Bayes)
- Individual trajectories show "high purity"

DISTRIBUTION OF RABI TRAJECTORIES

Excellent agreement with ODE solutions

CAN WE ENTANGLE TWO REMOTE SUPERCONDUCTING QUBITS via MEASUREMENT ?

"TRACKING ENTANGLEMENT GENERATION BETWEEN TWO SPATIALLY SEPARATED SUPERCONDUCTING QUBITS"

N. Roch et al., PRL 112, 170501, 2014

TWO DISTANT QUBITS

Theoretical proposal:

Kerckoff, Bouten, Silberfarb & Mabuchi, **Phys Rev A** (2009)

WEAK CONTINUOUS MEASUREMENT

No classical OR quantum observer can discriminate eigenstates; system is perturbed, but not projected, by measurement.

Hatridge et al., Science 2013

MEASUREMENT HISTOGRAMS

MEASUREMENT INDUCED ENTANGLEMENT

Quantifying the entanglement: $C = \max(0, |\rho_{01,10}| - \sqrt{\rho_{00,00}\rho_{11,11}})$

TRAJECTORIES

(measurement back-action)

Quantum trajectory reconstruction allows us to directly observe quantum state evolution under measurement

Single Qubit Trajectories: Murch et al., **Nature** 2013 Weber et al., **Nature** 2014

PULSE SEQUENCE & ANALYSIS

QUANTUM BAYESIAN UPDATE

BAYESIAN TRAJECTORY RECONSTRUCTION

BAYESIAN TRAJECTORY RECONSTRUCTION

CONDITIONAL TOMOGRAPHY MAPPING

 $\circ \rho_{00,00} + \rho_{01,01} \circ \rho_{10,10} \times \rho_{11,11} \circ \rho_{01,10}$

FUTURE DIRECTIONS

- IMPROVE DETECTION EFFICIENCY (ON-CHIP PARAMPS)
- TRAVELING WAVE AMPLFIERS (BW ~ 2 GHz)
- FEEDBACK STABILIZATION OF ENTANGLEMENT
- WEAK MEASUREMENT IN QUBIT CHAINS
 - → Adaptive State Estimation (cf. tomography)
 → Weak Value Amplification of Errors/Couplings
 → Information Flow / Equilibration / Perturbations

<u>QNL</u>

Dr. Shay Hacohen-Gourgy Dr. David Toyli

Natania Antler Andrew Eddins Chris Macklin Leigh Martin Vinay Ramasesh Mollie Schwartz Steven Weber

<u>Alumni</u>

Dr. Kater Murch (Wash U) Dr. Ofer Naaman (NGC) Dr. Nico Roch (CNRS) Dr. Andrew Schmidt (IBM) Dr. R. Vijay (TIFR)

Michael Hatridge (Yale) Edward Henry Eli Levenson-Falk (Stanford) Zlatko Minev (Yale) Ravi Naik (U. Chicago) Anirudh Narla (Yale) Seita Onishi (UC Berkeley) Daniel Slichter (NIST) Yu-Dong Sun