
C191 - Lecture 2 - Quantum states and observables

I. ENTANGLED STATES

We saw last time that quantum mechanics allows for systems to be in superpositions of basis states. Many of these
superpositions possess a uniquely quantum feature known as entanglement. As an example, consider the two-qubit
state

|ψ〉 = 1√
2
|00〉+ 1√

2
|11〉

Because this is a two qubit state, I can separate the two qubits, giving one to Alice and the other to Bob. If Alice
measures her qubit, she will have a 50% chance of measuring 0 and 50% chance of measuring 1. But if Alice measures
a 1, then necessarily Bob will measure a 1, even if the qubits are removed from causal contact from one another (many
light seconds away, for instance). Contrast this with the state

|phi〉 = 1√
2
|00〉+ 1√

2
|01〉

Now Alice will measure 0 with 100% probability, but Bob’s measurement will still be 0 or 1 with 50% probability
each. This state is called separable because it may be written as

|φ〉 = 1√
2
|00〉+ 1√

2
|0〉 1 =

1√
2
|0〉 ⊗ |0〉+ 1√

2
|0〉 ⊗ |0〉 = |0〉 ⊗

(

1√
2
|0〉+ 1√

2
|1〉

)

Entangled states are those which can never be written this way. We will see later that entanglement is an extremely
important resource for quantum computation.

II. DENSITY MATRICES

Quantum states are inherently probabilistic, but how do we handle situations where there is additional classical
uncertainty? This could arise, for instance, if we were given a quantum state that, with probability p1 was prepared
in some state |ψ〉, and with probability p2 was prepared in a state |φ〉. The expectation value of an operator, A over
some state, |ψ〉, is defined as,

〈A〉ψ = 〈ψ|A|ψ〉
But recall what an expectation value is: it the sum of all possible measurement outcomes weighted by their prob-
abilities. So if we have some classical uncertainty, we can just build that into the definition of the expectation
value,

〈A〉 = p1 〈A〉ψ + p2 〈A〉φ
= p1 〈ψ|A|ψ〉+ p2 〈φ|A|φ〉

At this point we introduce a mathematical object known as the resolution of the identity. We can take a complete
set of states, {|n〉} and take their outer products, I =

∑

n |n〉〈n|. This is equal to the identity. We can see this in a
simple example of a two level system: multiply any two level state on the left by |0〉〈0|+ |1〉〈1| and you will see that
you get the same state back. In matrix form, this can be written as:

(

1
0

)

(

1 0
)

+

(

0
1

)

(

0 1
)

=

(

1 0
0 1

)

,

which is the identity matrix. Inserting the resolution of the identity into the above expression, we have

〈A〉 = p1
∑

n

〈ψ|n〉 〈n|A |ψ〉+ p2
∑

n

〈ψ|n〉 〈n|A |φ〉

= p1
∑

n

〈n|A |ψ〉 〈ψ|n〉+ p2
∑

n

〈n|A |φ〉 〈ψ|n〉

=
∑

n

〈n|A (p1 |ψ〉〈ψ|+ p2 |φ〉〈φ|) |n〉
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We call the quantity in the parentheses the density matrix

ρ = p1 |ψ〉〈ψ|+ p2 |φ〉〈φ|
and we can interpret

∑

n 〈n|B |n〉 as the trace of the matrix B. This can be seen again by considering a two level
system:

∑

n

〈n|B |n〉 =
(

1 0
)

(

b00 b01
b10 b11

)(

1
0

)

+
(

0 1
)

(

b00 b01
b10 b11

)(

0
1

)

= b00 + b11

= TrB

So we have

〈A〉 = Tr ρA

We’ll see density matrices frequently when we begin to talk about errors in quantum states. These errors occur when
the controls we use to create states are imperfect and introduce uncertainty into the system.

III. HERMITIAN OPERATORS

One of the axioms of quantum mechanics is that every observable corresponds to a Hermitian operator. Let’s review
some properties of these objects

1. By definition, a Hermitian operator is equal to its conjugate transpose. A = AT∗ = A†.

2. Hermitian operators have real eigenvalues. For some eigenstate, A |u〉 = a |u〉. Multiply on the left by 〈u| and
we have

〈u|A|u〉 = a 〈u|u〉 = a

Now take the conjugate-transpose of both sides.

〈u|A|u〉 = a†

|u〉†A† 〈u|† = a∗

〈u|A |u〉 = a∗

Which implies that a = a∗, so the eigenvalue must be real.

3. Eigenvectors are orthogonal if they possess different eigenvalues. Now additionally assume we have another
eigenvector with a different eigenvalue, A |v〉 = b |v〉. Then with A acting to the right, we have

〈v|A |u〉 = a 〈v|u〉
but with A acting to the left we have

〈v|A |u〉 = b 〈v|u〉
this means that a 〈v|u〉 = b 〈v|u〉. If a 6= b, then 〈v|u〉 = 0, so the vectors are orthogonal.

4. Hermitian operators may be expressed in terms of their spectral representation:

A =
∑

n

an |n〉〈n|

Where A |n〉 = an |n〉. This is called a spectral representation because the collection of eigenvalues is often
referred to as the spectrum of an operator.

5. Commuting observables possess a simultaneous eigenbasis. This proof has two parts: i) Two operators that
share an eigenbasis must commute, and ii) two operators that commute must share an eigenbasis. I’ll do the
first one here, the second one is worth working out yourselves. Assume we have two operators which share an
eigenbasis, A |n〉 = an |n〉 and B |n〉 = bn |n〉. Then

AB |n〉 = A(bn |n〉) = bnA |n〉 = anbn |n〉

BA |n〉 = B(an |n〉) = anB |n〉 = anbn |n〉
So if AB |n〉 = BA |n〉 on every state |n〉, then AB = BA, and we say that the operators commute.
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A. Commutators

The commutator of two hermitian operators, A,B is defined as [A,B] = AB−BA. Here are some of their properties,

1. The are linear in both elements

[c1A1 + c2A2, B] = c1[A1, B] + c2[A2, B]

[A, c1B1 + c2B2] = c1[A,B1] + c2[A,B2]

2. The are antisymmetric

[A,B] = −[B,A]

3. They satisfy the Jacboi identity

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0

4. They satisfy the Leibnitz identity

[AB,C] = A[B,C] + [A,C]B

[A,BC] = B[A,C] + [A,B]C

IV. TENSOR PRODUCTS OF OPERATORS

When we combine quantum systems, the state vectors live in a Hilbert space that is the tensor product of the two
constituent Hilbert spaces. If each qubit is in a particular state, then the combined state is the tensor product of the
individual states. And if each qubit is operated on by a particular operator, then the combined operator is the tensor
product of the individual operators.

1. Tensor products are linear

(a1A1 + a2A2)⊗B = a1A1 ⊗B + a2A2 ⊗B

2. Each term in a tensor product acts on its own component

(A⊗B) (|mn〉) = (A⊗B) (|m〉 ⊗ |n〉) = A |m〉 ⊗B |n〉

3. Multiplication of operators

(A⊗B) (C ⊗D) = AC ⊗BD

4. The matrix representation of tensor products is, for states:

(

a0
a1

)

⊗
(

b0
b1

)

=









a0

(

b0
b1

)

a1

(

b0
b1

)









=







a0b0
a0b1
a1b0
a1b1







For operators,

(

a00 a01
a10 a11

)

⊗
(

b00 b01
b10 b11

)

=









a00

(

b00 b01
b10 b11

)

a01

(

b00 b01
b10 b11

)

a10

(

b00 b01
b10 b11

)

a11

(

b00 b01
b10 b11

)









=







a00b00 a00b01 a01b00 a01b01
a00b10 a00b11 a01b10 a01b11
a10b00 a10b01 a01b00 a11b01
a10b10 a10b11 a01b10 a11b11






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A. Complete set of commuting observables

For any Hilbert space, we can specify a (not unique!) set of commuting observables, {A,B, . . .}. If each eigenstate
is associated with a unique set of eigenvalues over this set, the set is called a complete set of commuting observables

or CSCO. Taking a qubit as an example, we can measure the Pauli Z operator,

Z = σz = σ3 =

(

1 0
0 −1

)

.

This is a somewhat trivial example, because there is only one operator in the set, but we can nonetheless associate
each eigenstate, |0〉 and |1〉 with its unique eigenvalue, +1 and −1, respectively. For multiple qubits, we can take
tensor products of the Z with the identity operator,

I = σi = σ0 =

(

1 0
0 −1

)

.

For example, take a six qubit system and the state |b1b2b3b4b5b6〉, where bi is a binary digit. We will consider the
expectation values of the following operators:

Z1 = ZIIIII

Z2 = IZIIII

Z3 = IIZIII

...

All of these operators commute, which can be proven by direct computation:

[Z1,Z2] = Z1Z2 − Z2Z1

= (ZIIIII)(IZIIII) − (IZIIII)(ZIIIII)

= (ZI⊗ IZ⊗ I⊗ I⊗ I⊗ I)− (IZ⊗ ZI⊗ I⊗ I⊗ I⊗ I)

= (Z⊗ Z⊗ I⊗ I⊗ I⊗ I)− (Z⊗ Z⊗ I⊗ I⊗ I⊗ I)

= 0

And their expectation values are

〈Z1〉 = 〈b1b2b3b4b5b6|ZIIIII |b1b2b3b4b5b6〉
= 〈b1|Z |b1〉 〈b2|b2〉 〈b3|b3〉 〈b4|b4〉 〈b5|b5〉 〈b6|b6〉
= (−1)b1 × 1× 1× 1× 1× 1

= (−1)b1

Following the trend, we see that any eigenstate, |b1b2b3b4b5b6〉 corresponds to a unique set of eiegnvalues, {(−1)bi}i∈[1..6]
with respect to the CSCO listed above.

V. FUNCTIONS OF OPERATORS AND THE SCHRODINGER EQUATION

The Schrodinger equation is

i~
∂

∂i
|ψ(t)〉 = H(t) |ψt〉

This looks very familiar to the ODE,

d

dt
y(t) = a(t)y(t)

for which the solution is

y(t) = exp

∫ t

0

a(s)dsy(0).
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Similarly, the formal solution to the Schrodinger equation is

|ψ(t)〉 = T
←
exp

(

−i
∫ t

0

H(s)ds/~

)

|ψ(0)〉

The time ordering operator T
←

is included to handle the fact the H(t) might not commute with H(t′). But for now

we will assume that H(t) = H is constant, so the time ordering complication goes away and we are left with:

|ψ(t)〉 = exp (−iHt/~) |ψ(0)〉

But now we must interpret this exponential of an operator,

exp (−iHt/~) .

In general, functions of operators can be interpreted in terms of the spectral representation of the operators. Recall
that an operator A can be written in terms of its eigenvalues and eigenvectors as

A =
∑

n

an |n〉〈n|

A function f of this operator is then interpreted as

f(A) =
∑

n

f(an) |n〉〈n|

So the solution to the Schrodinger equation may be written as

|ψ(t)〉 =
∑

n

exp (−iEnt/~) |n〉〈n| |ψ(0)〉

Where the eigenvalues of the Hamiltonian operator, H are given the special symbol En and are interpreted as energies.
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