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The following is an overview of entanglement as discussed in class and in discussion sections.

I. WARMUP

This simplest states considered in quantum mechanics are separable pure states. These states live in some Hilbert
space with tensor product structure:
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where we have become familiar with writing a states in this space as:
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The emphasis on ‘separable’ here is meant to reinforce that this state has only one term. That it is factorizable in
this way distinguishes it from other states we will consider momentarily. Should we want to complicate our lives, we
can likewise define separable mixed states:
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Where ) . p; = 1 and where p4, pp.etc. are densities matrices formed from the separable states in the form
above. That is, pa = [a) (¥4l
A fairly simple definition of entanglement follows: entangled states are those which are not separable. We have
already seen some examples of these states such as the Bell states:
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But these examples don’t give us a good operational meaning for entanglement: What can we do to it? Can we
quantify it? What does it allow us to do? We’ll answer each of these questions in turn.

II. WHAT CAN WE DO TO ENTANGLEMENT?

Suppose Alice and Bob each have a qubit. We’d like to investigate to what extent Alice and Bob can alter the
presence of any entanglement shared by their qubits. Suppose that Alice and Bob are well separated, are only
allowed to do local operations on their qubits, and are allowed to communicate classically (in the literature, this set
of constraints is called LOCC, or Local Operations Classical Communication). Suppose Alice and Bob’s qubit is in
the state ¥ 4p. If, through local operations and classical communication, Alice and Bob can transform their pair into
another state, call it ¢ 45, and then transform their state back to ¥ a5, then we call ¥ 45 and ¢ 45 LOCC equivalent.

It’s fairly easy to see that the Bell states above are LOCC equivalent. If Alice and Bob know ahead of time which
Bell state they have, a single qubit rotation by either of them will take |¢)*) to |¢T) (i.e., let Alice apply the unitary
ox ® 1p). Another application of the unitary will rotate back to the original Bell state. Note however that the
state |00) + |11) is not LOCC equivalent to the state |00). While measurement followed by a conditional application
of unitaries can map |00) + [11) — |00) via LOCC, the other direction is not possible under LOCC. This example
is meant to demonstrate that there’s something inherently nonlocal about entanglement. That is, local operations
can keep you within a given manifold of LOCC equivalent states, but you can’t create an entangled state via LOCC
operations. Further, LOCC operations can even destroy entanglement, as in the previous example.

Quite a bit more could be said about ways in which entanglement can be transformed so as to be useful, which I
won’t talk much more about. But if we have any hope to transform entanglment controllably, we need a good measure
of entanglement.



III. CAN WE QUANTIFY ENTANGLEMENT?

Yes. In fact, there are well over a dozen entanglement measures with widespread use in the literature. The first,
and probably most widespread candidate is Schmidt rank.

Suppose we have an arbitrary 2-qubit state: |¢ap). For the Hilbert space Ha ® Hg, let {|e;) ® |e;)} be an
orthonormal basis for the space. Then, in general:

da—1ldp—1

[Wap) =D D Aijles) @ lej) (6)

i=0 j=0

Written this way, if the matrix A;; is rank-1, then ¥ 4p) is a separable state (remember that the rank of a matrix
is just the number of linearly dependent vectors that make up (interchangeably) the columns or rows of the matrix).
This should be intuitive—if a Matrix is rank 1, then upon diagonalizing the matrix, there’s only 1 nonzero entry on
the diagonal, or, in other words, there’s only 1 term to write down. This supplies a simple entanglement measure:
the measure is defined to be the number of nonzero terms in the diagonalization of A;;, or equivalently, the rank of
A;;. This is the Schmidt Rank. In the literature, Schmidt rank is called: Schmidt Rank (unsurprisingly), (), or
sometimes K.

In general, if we’ve diagonalized an arbitrary quantum state, we can write it as:
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Where the tilde over the es is just meant to emphasize that we’re working in the basis in which ¥ 4p) is diagonal.
Notice the matrix A;; has been replaced with a set of scalars a; which are nothing other than the diagonal entries
of the diagonalization of A;;. These diagonal entries also have a nice operational interpretation in terms of reduced
density matrices. Letting pap = [Yap){(¥aB|:
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But these coefficients are the same as if we had traced over A:
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It’s important to emphasize that the states are different in the two resulting partial traces, but that the coefficients
are the same. Identiftying a? as a probability draws a nice correspondence between the Schmidt coefficients and the
terms in the above reduced density matrices.

The second most widely studied type of entanglement is the Entanglement Entropy. If you’ve studied classical in-
formation theory, or seen a statistical mechanics oriented thermodynamics course, you’ve probably seen the expression
for Shannon entropy:



Ha (%)
10

08

04r

02

0.2 0.4 0.6 0.8 1.0

FIG. 1: The Shannon entropy of a random variable which is 1 with probability x and 0 with probability 1-x.
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Where b specifies the base of the log, and p(z;) are probabilities of outcomes for some random variable. For the
case of a binary random variable (like a coin flip), this is easy to visualize, and is depicted in Figure 1.

Intuitively, entropy is maximized when the random variable is 1 with probability .5 and 0 with probability .5. In this
way, the Shannon entropy is giving some sort of measure on our uncertainty about the outcomes in the system. As the
probability of x tends towards 0 or 1, the system starts becoming more predictable, and this measure commensurately
decreases. After all, if you have a heavily biased coin (i.e., x — 1), you will be able to predict outcomes more often.
Predictability and entropy go hand in hand in classical information theory, where these sorts of measures are used to
study compressibility of signals, as well as the content of encrypted data.

Quantum mechanically, a related entropy measure will tell us something similar. The (sort of) obvious extension
of Shannon entropy to the classical realm is the Von Neumann Entropy:
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Where the )\; are just the squares of the Schmidt coefficients, as discussed previously. Before we understand how
this object behaves for entangled states, let’s look at how it classifies pure and mixed states:

If we have a pure state, then there’s only 1 term in the sum, namely A\; = 1. In this case, the Von Neumann Entropy
is zero! Note that this is independent of whether the state is separable or not—the Von Neumann entropy is zero for
all pure states. From our discussion of density matrices, this should seem sensible, as we discussed in class how pure
density matrices can be thought of as quantum systems which we have perfect information about. But this can’t be
the only ingredient of our entanglement measure, as the Von Neumann entropy alone can’t distinguish between an
entangled pure state and a separable pure state.

Now, suppose we want to measure the Von Neumann entropy of a totally mixed state:
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Now we see that a totally mixed state has a nonvanishing amount of entropy (which scales linearly in the number
of qubits). This is also somewhat sensible, as we just finished talking about how entropy is a measure of uncertainty,



and totally mixed states are the maximum-uncertain states in quantum mechanics. But this doesn’t quite get at an
entanglement measure. For that, we’ll need to define one more object which looks like the Von Neumann entropy
with one caveat:
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This is the Entanglement Entropy. More verbosely, this is sometimes called the Entanglement Entropy of
subsystem B with respect to A. Even for pure states (which have vanishing Von Neumann entropy), this measure
is not necessarily vanishing, and tells something meaningful about the amount of entanglement shared between two
subsystems. You should be able to convince yourself that this measure is still vanishing for separable states. You
should also fairly easily see that something interesting happens for entangled states. For bipartite (i.e., 2 qubits)
pure states, one can show fairly easily that S(pa) = S(pp) = 1.

Another measure is the Entanglement of Formation:
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Where € is some ensemble of pure states and probabilities: € = {(p;, [¢s))}, where p = Y. p;|1)(¢|, and where
Er(]3)) is the Entanglement Entropy of ;. This definition requires a little bit of unpacking: Remember that
density matrices are not a unique representation of a quantum state. [0)(0] + |1)(1] is the same as |+)(+| + |—){(—|.
So, in general, there’s some ensemble of pure states that can be used to generate p, and the minimization is done
over this ensemble. This entropy measure has a nice operational meaning related to the number of Bell states needed
to generate a given p. For more information, see http://www.quantiki.org/wiki/Entanglement_of_formation.

Another measure favored by experimentalists is called the Concurrence. For pure states, it’s simply:
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Where p4 is the reduced density matrix for some bipartite state pap. You are to imagine the experimentalist
has a two-qubit system, and wants to measure the entanglement between the two systems. If the system is in a
separable state, the concurrence is clearly 0. However, if the pair of qubits is in a Bell state, it’s easy to show that

the Concurrence is 1. Experimentalists like to show that they can make things close to Bell states, so this measure
caught on. There’s also a nice generalization to mixed states:
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Where we again minimize over ensembles of states which realize a given p. It can be shown that for 2-qubit states,
this is the same as:
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Where the \; are Schmidt coefficients in decreasing order.

The last measure we will consider is a multipartite distance measure (where all of the previous measures are bipartite
measures) called Quantum Relative Entropy. First we define a distance measure between p; and ps to be:
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The relative entropy is then:
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Where S is some ensemble of separable states. Note that this measure is extremely difficult to calculate in general.

Hopefully, this will have given you an idea of the many different ways in which quantum information scientists try
and quantify entanglement. The takeaway from this list, if anything, is that there’s not really a single overarching
entanglement measure because different measures are useful for different contexts.

IV. WHAT DOES ENTANGLEMENT ALLOW US TO DO?

I talked about this quite a bit in my last couple of discussion sections. Instead of rehashing those discussion sections,
T’ll point to the two papers that I covered and briefly summarize them:
First: http://arxiv.org/abs/1204.3107

In this paper, Van den Nest considers to what extent different amounts of entropy during a calculation allow the
ability to perform universal quantum computation. The punchlines are: 1) If the Schmidt rank of all your qubits is
logarithmically small in the number of qubits at every step of a quantum computation, then whatever computations
you try to perform are efficiently classically simulatable. 2) You can perform arbitrary quantum computation
with polynomially (vanishingly) small Renyi Entropy. I did not discuss Renyi entropy here, but it is a standard
generalization of Entanglement Entropy.

Second: http://arxiv.org/abs/1401.4174  or if you  want the fancy  nature  version:
http://www.nature.com/nature/journal /v510/n7505/full /nature13460.html

In this paper, Howard et al. demonstrate that a property called Contextuality is fundamentally important in
allowing for quantum speedup. This paper is fairly technically heavy, but the gist of the problem is that a) we
know how to make transversal gates really well, and b) we know how to make stabilizer codes really well, but ¢) If
you only ever use transversal gates and stabilizer codes, you can’t actually perform arbitrary quantum computation.
The authors spend a long time showing that this special resource called Contextuality is related to the necessary
ingredient to extend Transversal/Stabilizer computing to universal quantum computation. They do this by relating
Contextuality to Magic State Distillation in a fairly clever way. The punchlines of this paper are: 1) If a state is
distillable via magic state distillation, then it is necessarily a Contextual state 2) It might be the case (in dimension
greater than 3) that Contextual states are necessarily distillable via magic state distillation. (It is already known than
in dimension 2, this is false-i.e., there are Contextual states which are not distillable via magic state distillation).

If you would like to know more about these last two topics, I encourage you to read about these topics more. This
last subheading is very much still an active research area.



