61A Lecture 7

Announcements

Hog Contest Rules

*Up to two people submit one entry; _«
Max of one entry per person [-)

<
* Your score is the number of entries =

Fall 2013 Winners

Paul Bramsen

Sam Kumar & Kangsik Lee
Kevin Chen

against which you win more than % Fall 2014 Winners
3000001% of the tine T) Alan Tong & Elaine Zhao
* A1l strategies must be deterministic, o Zhenyang Zhang
pure functions of the players' scores [) Adam Robert Villaflor & Joany Gao .
< p :
* A1l winning entries will receive G‘ Zhen Qin & Dian Chen Order of Recursive Calls
extra credit = Zizheng Tai & Yihe Li
* The real prize: honor and glory © Spring 2015 Winners
Fall 2011 Winners % Sinho_Chg\u & Alexander Nguyen Tran
- Zhaoxi Li
Kaylee Mann . © Stella Tao and Yao Ge
Yan Duan & Ziming Li o} Fall 2015 Winners
Brian Prike & Zhenghao Qian ?},
Parker Schuh & Robert Chatham '2 Micah Carroll & Vasilis Oikonomou
Fall 2012 Winners @ Matthew Wu X
7 Anthony Yeung and Alexander Dai
Chenyang Yuan -
Joseph Hui Fall 2016 Winners...
cs6la.org/proj/hog contest
The Cascade Function Two Definitions of Cascade
(Demo) (Demo)
def cascade(n): Global frame func cascade(n) [parent=Global]
if n < 10: d
print(n) coseace def cascade(n): def cascade(n):
if n < 10: print(n)
else: f1: cascade [parent=Global] print(n) if n >= 10:
print(n) n 123 else:
cascade(n//10) print(n)
print(n) . » cascade(n//10)
- R |18 COREED (PRt EICEEN) -Each cascade frame is from a print(n)
n 12 different call to cascade.
cascade(123)
feli? None -Until the Return value appears,

Program output:

: cascade [parent=Global]

n

Return
value

that call has not completed.
<Any statement can appear before
i or after the recursive call.

None

« If two implementations are equally clear, then shorter is usually better

- In this case, the longer implementation is more clear (at least to me)

- When learning to write recursive functions, put the base cases first

- Both are recursive functions, even though only the first has typical structure

Example: Inverse Cascade

Inverse Cascade
Write a function that

1

12
123
1234
123
12

1

prints an inverse cascade:

def inverse_cascade(n):
grow(n)
print(n)
shrink(n)

def f_then_g(f, g, n):
if n:
f(n)
g(n)

grow = lambda n: f_then_g(
shrink = lambda n: f_then_g(

Tree Recursion

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more
than one recursive call

n: o,1,2 3,4,5,6, 7, 8, ey 35

fib(n): o, 1, 1, 2, 3, 5, 8, 13, 21, eee s 9,227,465

def fib(n):
if n == 0:
return 0
elif n == 1:
return 1
else:
return fib(n-2) + £ib(n-1)

http://en.wikipedia.orq/wiki/File:Fibonacci. ipg

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

Repetition in Tree-Recursive Computation

This process is highly repetitive; fib is called on the same argument multiple times

fib(5)
fib(3) fib(4)
/ N
fib(1) fib(2)
‘ v/ N fib(2) fib(3)
1 fib(e) fib(1) / AN Va AN
‘ ‘ fib(@) fib(1) fib(1) fib(2)
’ ! \ \ b7 N
0 1 1 fib(@) fib(1)

1

(We will speed up this computation dramatically in a few weeks by remembering results)

Example: Counting Partitions

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

count_partitions(6, 4)

2+4=6

1+1+4=6

3+3=6

1+2+3=6
1+1+1+3=6
2+2+2=6
1+1+2+2=6
1+1+1+1+2=6
1+1+1+1+1+1=6

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

count_partitions(6, 4)

-Recursive decomposition: finding
simpler instances of the problem.

“Explore two possibilities: 4
*Use at least one 4 .
+Don't use any 4 ,

*Solve two simpler problems:

- count_partitions(2, 4) -
- count_partitions(6, 3)

“Tree recursion often involves
exploring different choices.

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

-Recursive decomposition: finding
simpler instances of the problem.

def count_partitions(n, m):

return 1

“Explore two possibilities: elif n < 0:

‘Use at least one 4 _ return @

elif m == 0:

+Don't use any 4 return 0
+Solve two simpler problems: else:

» with m = count_partitions(n-m, m)
» without_m = count_partitions(n, m-1)
return with m + without m

- count_partitions(2, 4)
- count_partitions(6, 3)

“Tree recursion often involves
exploring different choices.

(Demo)

I ive Di

