61A Lecture 30

Announcements

Efficient Sequence Processing

Sequence Operations

Map, filter, and reduce express sequence manipulation using compact expressions

Example: Sum all primes in an interval from a (inclusive) to b (exclusive)

def sum_primes(a, b): def sum_primes(a, b):
total = @ return sum(filter(is_prime, range(a, b)))
X =a
while x < b: sum_primes(1, 6)
if is_prime(x): sum filter range iterator
total = total + x
X =Xx+1 source: ——»| source: —»| next: B
return total total: @e f:is_prime end: 6
Space: o(1) o(1)

(Demo)

Streams

Streams are Lazy Scheme Lists

A stream is a list, but the rest of the list is computed only when needed:

(car (cons 1 2)) 1 (car (cons-stream 1 2)) 1
(cdr (cons 1 2)) 2 (cdr-stream (cons-stream 1 2)) 2
(cons 1 (cons 2 nil)) (cons-stream 1 (cons-stream 2 nil))

Errors only occur when expressions are evaluated:

(cons 1 (/ 1 0)) ERROR (cons-stream 1 (/ 1 0)) (1 . #[delayed])

(car (cons 1 (/ 1 0))) ERROR (car (cons-stream 1 (/ 1 0))) 1

(cdr (cons 1 (/ 1 0))) ERROR (cdr-stream (cons-stream 1 (/ 1 0))) ERROR
(Demo)

Stream Ranges are Implicit
A stream can give on-demand access to each element in order

(define (range-stream a b)
(if (>= a b)
nil
(cons-stream a (range-stream (+ a 1) b))))
(define lots (range-stream 1 10000000000000000000))
scm> (car lots)
1

scm> (car (cdr-stream lots))

2
scm> (car (cdr-stream (cdr-stream lots)))
3

Infinite Streams

Integer Stream

An integer stream is a stream of consecutive integers

The rest of the stream is not yet computed when the stream is created

(define (int-stream start)
(cons-stream start (int-stream (+ start 1))))

(Demo)

Stream Processing

(Demo)

Recursively Defined Streams

The rest of a constant stream is the constant stream

(define ones (cons-stream 1 ones)) 11111 1

Combine two streams by separating each into car and cdr

(define (add-streams s t)
(cons-stream (+ (car s) (car t))
(add-streams (cdr-stream s)
(cdr-stream t))))

(define ints (cons-stream 1 (add-streams ones ints))) 1 2 3 4 5 6 7

Example: Repeats

(define a (cons-stream 1 (cons-stream 2 (cons-stream 3 a))))

(define (f s) (cons-stream (car s)
(cons-stream (car s)
(f (cdr-stream s)))))

(define (g s) (cons-stream (car s)
(f (g (cdr-stream s)))))

What's (prefix a 8)2 I

what's (prefix (Fa)s)» (L 1 2 2 3 3 1 1,
2 2 3 3 3 3 1

What's (prefix (g a) 8)? (_ _ _ __ . __ __)

Higher-Order Stream Functions

Higher-Order Functions on Streams
(define (map-$tegam f s)
Implementations are identical, (if (r.|u11? s)
but change cons to cons-stream nil
and change cdr to cdr-stream (cons-§fréamr(£)jcar s))
(map-$tream f

(cdr-s¥p3an $)))))

(define (filter-$tpdam f s)
(if (null? s)
nil
(if (f (car s))
(cons-fteeam)(car s)
(filter-$tfedm £)§ydr-stream s)))
(filter-stfedm £)Jydiy-stream s)))))

(define (reduce-$tseamaft) start)
(if (null? s)
start
(reduce-$tream f
(Demo) (cdr-sjream s)
(f start (car s)))))

A Stream of Primes
For any prime k, any larger prime must not be divisible by k.

The stream of integers not divisible by any k <= n is:
-The stream of integers not divisible by any k < n
*Filtered to remove any element divisible by n

This recurrence is called the Sieve of Eratosthenes

2 3,4, 5,%%, 7\3‘\&}0\ 11, 12, 13

(Demo)

