
DELAYED EXPRESSIONS 9
COMPUTER SCIENCE 61A

November 10, 2016

1 Iterables and Iterators

An iterable object is any container that can be processed sequentially. Examples of iter-
ables are lists, tuples, strings, and dictionaries. To process the elements sequentially, call
iter on the iterable to retrieve an iterator.

An iterator is an object that tracks the position in a sequence of values in order to provide
sequential access. It returns elements one at a time and is only good for one pass through
the sequence. To access the next element of an iterator, call next on the object. Each time
next is called, the iterator advances.

We can create as many iterators as we would like from a single iterable. However, itera-
tors will go through the elements of the sequence they represent only once. To go through
an iterable twice, create two iterators!

>>> iterable = [4, 8, 15, 16, 23, 42]
>>> iterator1 = iter(iterable)
>>> next(iterator1)
4
>>> next(iterator1)
8
>>> next(iterator1)
15
>>> iterator2 = iter(iterable)
>>> next(iterator2)
4



DISCUSSION 9: DELAYED EXPRESSIONS Page 2
1.1 For Loops

We have already been using iterables to go through the elements of a sequence. This
happens all the time in for loops. For example:
>>> for n in [1, 2, 3]:
... print(n)
...
1
2
3

This works because the for loop implicitly creates an iterator using the iter method.
Python then repeatedly calls next repeatedly on the iterator, until it raises StopIteration.
In other words, the loop above is (basically) equivalent to:

iterator = iter([1, 2, 3])
try:

while True:
n = next(iterator)
print(n)

except StopIteration:
pass

1.2 Generators

A generator function is a special kind of Python function that uses a yield statement
instead of a return statement to report values. When a generator function is called, it returns
an iterator. The following is a function that returns an iterator for the natural numbers:
def gen_naturals():

current = 0
while True:

yield current
current += 1

Calling generate_naturals() will return a generator object, which you can use to
retrieve values.
>>> gen = gen_naturals()
>>> gen
<generator object gen at ...>
>>> next(gen)
0
>>> next(gen)
1

CS 61A Fall 2016



DISCUSSION 9: DELAYED EXPRESSIONS Page 3
1.3 yield

The yield statement is similar to a return statement. However, while a return state-
ment closes the current frame after the function exits, a yield statement causes the frame
to be saved until the next time next is called, which allows the generator to automatically
keep track of the iteration state.

Once next is called again, execution resumes where it last stopped and continues until
the next yield statement or the end of the function. A generator function can have
multiple yield statements.

Including a yield statement in a function automatically tells Python that this function
will create a generator. When we call the function, it returns a generator object instead of
executing the the body. When the generator’s nextmethod is called, the body is executed
until the next yield statement is executed.

1.4 yield from

The yield from statement is similar to a yield statement. yield from takes in an
iterator and yields each of the values from that iterator. It can be used in conjunction with
other yields and yield froms.

>>> square = lambda x: x*x
>>> def many_squares(s):
... for x in s:
... yield square(x)
... yield from [square(x) for x in s]
... yield from map(square, s)
...
>>> list(many_squares([1, 2, 3]))
[1, 4, 9, 1, 4, 9, 1, 4, 9]

When the list function in Python receives an iterator, it calls the next function on the
input until it raises a StopIteration. It puts each of the elements from the calls to next
into a new list and returns it.

1.5 Questions

1. Define an generator function that combines two input iterators using a given com-
biner function. The resulting iterator should have a size equal to the size of the shorter
of its two input iterators.

CS 61A Fall 2016



DISCUSSION 9: DELAYED EXPRESSIONS Page 4
>>> from operator import add
>>> evens = combiner(gen_naturals(), gen_naturals(), add)
>>> next(evens)
0
>>> next(evens)
2
>>> next(evens)
4
def combiner(iterator1, iterator2, combiner):

2. What is the result of executing this sequence of commands?
>>> nats = gen_naturals()
>>> doubled_nats = combiner(nats, nats, add)
>>> next(doubled_nats)

>>> next(doubled_nats)

3. Write a generator function that returns all subsets of the positive integers from 1 to
n. Each call to this generator’s next method will return a list of subsets of the set
[1, 2, ..., n], where n is the number of times next was previously called.
def generate_subsets():

"""
>>> subsets = generate_subsets()
>>> for _ in range(3):
... print(next(subsets))
...
[[]]
[[], [1]]
[[], [1], [2], [1, 2]]
"""

CS 61A Fall 2016



DISCUSSION 9: DELAYED EXPRESSIONS Page 5

2 Streams

In Python, we can use iterators to represent infinite sequences. However, Scheme does not
support iterators. Let’s see what happens when we try to use a Scheme list to represent
an infinite sequence of natural numbers:
scm> (define (naturals n)

(cons n (naturals (+ n 1))))
naturals
scm> (naturals 0)
Error: maximum recursion depth exceeded

Because the second argument to cons is always evaluated, we cannot create an infinite
sequence of integers using a Scheme list.

Instead, our Scheme interpreter (and scheme.cs61a.org) supports streams, which are lazy
Scheme lists. The first element is represented explicitly, but the rest of the stream’s ele-
ments are computed only when needed. This evaluation strategy, where we don’t com-
pute a value until it is needed, is called lazy evalutation. Let’s try to implement the se-
quence of natural numbers again using a stream!
scm> (define (naturals n)

(cons-stream n (naturals (+ n 1))))
naturals
scm> (define nat (naturals 0))
nat
scm> (car nat)
0
scm> (car (cdr-stream nat))
1
scm> (car (cdr-stream (cdr-stream nat)))
2

We use the special form cons-stream to create a stream. Note that cons-stream is
a special form, because the second operand (naturals (+ n 1))) is not evaluated
when cons-stream is called. It’s only evaluated when cdr-stream is used to inspect
the rest of the stream.

• nil is the empty stream

• cons-stream creates a non-empty stream from an initial element and an expression
to compute the rest of the stream

• car returns the first element of the stream

• cdr-stream computes and returns the rest of stream

CS 61A Fall 2016



DISCUSSION 9: DELAYED EXPRESSIONS Page 6
Streams are very similar to Scheme lists. The cdr of a Scheme list is either another
Scheme list or nil; likewise, the cdr-stream of a stream is either a stream or nil.
The difference is that the expression for the rest of the stream is computed the first time
that cdr-stream is called, instead of when cons-stream is used. Subsequent calls to
cdr-stream return this value without recomputing it. This allows us to efficiently work
with infinite streams like the naturals example above. We can see this in action by
using a non-pure function to compute the rest of the stream:
scm> (define (compute-rest n)
...> (print 'evaluating!)
...> (cons-stream n nil))
compute-rest
scm> (define s (cons-stream 0 (compute-rest 1)))
s
scm> (car (cdr-stream s))
evaluating!
1
scm> (car (cdr-stream s))
1

Note that the symbol evaluating! is only printed the first time cdr-stream is called.

2.1 Questions

1. What would Scheme display?
scm> (define (has-even? s)

(cond ((null? s) False)
((even? (car s)) True)
(else (has-even? (cdr-stream s)))))

has-even?
scm> (define ones (cons-stream 1 ones))

scm> (define twos (cons-stream 2 twos))

scm> ones

scm> (cdr ones)

scm> (cdr-stream ones)

scm> (has-even? ones)

scm> (has-even? twos)

CS 61A Fall 2016



DISCUSSION 9: DELAYED EXPRESSIONS Page 7
2. Write map-stream, which takes a function f and a stream s and returns a new

stream, which has all the elements from s, but with f applied to each one.
(define (map-stream f s)

scm> (define evens (map-stream (lambda (x) (* x 2)) nat))
evens
scm> (car (cdr-stream evens))
2

3. Using streams can be tricky! Compare the following two implementations of filter-stream,
the first is a correct implementation whereas the second is wrong in some way. What’s
wrong with the second implementation?
; Correct
(define (filter-stream f s)

(cond
((null? s) nil)
((f (car s)) (cons-stream (car s) (filter-stream f

(cdr-stream s))))
(else (filter-stream f (cdr-stream s)))))

; Incorrect
(define (filter-stream f s)

(if (null? s) nil
(let ((rest (filter-stream f (cdr-stream s))))

(if (f (car s))
(cons-stream (car s) rest)
rest))))

4. Write a function range-stream which takes a start and end argument, and re-
turns a stream that represents the integers between included start and end - 1.
(define (range-stream start end)

CS 61A Fall 2016



DISCUSSION 9: DELAYED EXPRESSIONS Page 8
5. Write a function slice which takes in a stream, a start, and an end. It should

return a Scheme list that contains the elements of stream between index start and
end, not including end. If the stream ends before end, you can return nil.
(define (slice stream start end)

scm> (slice nat 4 12)
(4 5 6 7 8 9 10 11)

6. Since streams only evaluate the next element when they are needed, we can combine
infinite streams together for intersting results! We’ve defined the function zip-with
for you below. Use it to define a few of our favorite sequences.
(define (zip-with f xs ys)

(if (or (null? xs) (null? ys))
nil
(cons-stream
(f (car xs) (car ys))
(zip-with f (cdr-stream xs) (cdr-stream ys)))))

scm> (define evens (zip-with + (naturals 0) (naturals 0)))
evens
scm> (slice evens 0 10)
(0 2 4 6 8 10 12 14 16 18)
(define factorials

scm> (slice factorials 0 10)
(1 1 2 6 24 120 720 5040 40320 362880)
(define fibs

scm> (slice fibs 0 10)
(0 1 1 2 3 5 8 13 21 34)

CS 61A Fall 2016


