CS 61A Exam-Prep Section 4

List/dictionary mutation and representation, nonlocal, iteration

Fall 2015, Midterm 2, #2a

environment diagram with list mutation, nonlocal

2. (14 points) Exercises

(a) (6 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You may nol need to use all of the spaces or frames.

A complete answer will:

e Add all missing names and parent annotations to all local frames.

e Add all missing values created or referenced during execution.

e Show the return value for each local frame.

You are not required to write index numbers in list boxes.

1 [det 7eit): Global f ——— func f(it) [parent=Globall

2 it.append(it[1]1())

3 b » func b(it) [parent=Globall

4 | def b(it):

5 def steps(): fit list

6 nonlocal it

i it = fit[e]

8 return fit.pop() bit —

9 return steps list

10

11 | fit = [1, [2]]

12 | bit = [fit, b(fit[1])]

13 | f(bit) f1: b [parent=Globall .
list
0

Return Value

func steps()

f2: [parent=]
Return Value ‘
f3: [parent=]

Return Value

[parent=f1]

Fall 2015, Midterm 2, #3b non-recursive fill-in with list mutation and list representation

(b) (4 pt) Implement adder, which takes two lists x and y of digits representing positive numbers. It mutates
x to represent the result of adding x and y. Netes: The built-in reversed function takes a sequence and
returns its elements in reverse order. Assume that x[0] and y[0] are both positive.
def adder(x, y):
"""Adds y into x for lists of digits x and y representing positive numbers.

>>> a = [3, 4, 5]

>>> adder(a, [5, 5]) # 345 + 55 = 400
(4, 0, 0]
>>> adder(a, [8, 3, 4]) # 400 + 834 = 1234

[1; 24 3y 4]

>>> adder(a, [3, 3, 3, 3, 31) # 1234 + 33333 = 34567
[3, 4, 5, 6, 7]

nmnn

carry, i = 0, len(x)-1

for d in reversed([0] + y):

el e e e e e e e
x.insert (0, 0)
i=20
d = carry + x[i] + 4
if x[0] == 0:

x.remove (0)
return x

Spring 2018, Exam-Prep 4, #1 environment diagram with list mutation

1. Lots of Lists
Draw the environment diagram that results from executing the following code.

o
Il

.pop ()

.remove (2)

= [].append(b[1])

.insert(b.pop(l), al[-3:4:31])

.extend(b)

if b == b[:] and b[1][1][0] is b[O0]J[1][1]:
a, b, ¢ = [c] + a[-4:4:2]

oL QOO0 09 09w

Fall 2015, Midterm 2, #3e

recursive fill-in with list representation

(e) (8 pt) Implement int_set, which is a higher-order function that takes a list of non-negative integers called

contents. It returns a function that takes a non-negative integer n and returns whether n appears in
contents. Your partner left you this clue: Every integer can be expressed uniquely as a sum of powers of 2.
E.g., b equals 1 + 4 equals pow(2, 0) + pow(2, 2). The bits helper function encodes a list of nums using
sequences of 0's and 1's that tell you whether each power of 2 is used. starting with pow(2, 0).

Note: You may not use built-in tests of list membership, such as an in expression or a list’s index method.

def bits(nums):
"""A set of nums represented as a function that takes ‘entry’, 0, or 1.

>>> t = bits([4, 5]) # Contains 4 and 5, but not 2

>>> t(0)(0)(1)(’entry’) # 4 = 0 * pow(2, 0) + 0 * pow(2, 1) + 1 * pow(2,
True

>>> £(0)(1)(’entry’) # 2 = 0 * pow(2, 0) + 1 % pow(2, 1)

False

>>> t(1)(0) (1) (’entry’) # 5 = 1 * pow(2, 0) + 0 * pow(2, 1) + 1 * pow(2,
True

[IRTNI]

def branch(last):
if last == ’entry’:

return 0 in nums

return ([for k in nums if

return branch

def int_set (contents):
"""Return a function that represents a set of non-negative integers.

>>> int_set ([1, 2])(1) , dint_set([1, 21)(3) # 1 in [1, 2] but 3 is not
(True, False)

>»>» s = int_set([1, 3, 4, 7, 91)

>>> [s(k) for k in range(10)]

[False, True, False, True, True, False, False, True, False, True]
nmnn

def contains(n):

t = index

while n:
last s ___ _ _ _ _ ______ e e i e e e
A T

return t(’entry’)

return contains

2)

2)

Summer 2015, Midterm 2, #5a

non-recursive fill-in with iteration

5. (13 points) The weakest link

(a) (2 pt) For the following questions, assume that the following generator function is defined:

def naturals():
i =1
while True:
yield i
i += 1

Implement a generator function called filter(iterable, fn) that only yields clements of iterable for

which fn returns True.

See the doctests for expected behavior. You may not use the built-in filter function or list com-

prehensions.

Your solution should not require more than 3 lines, and you do not need to use all 3 lines.

def filter(iterable, fn):

nnn

>>> is_even = lambda x: x % 2 == 0
>>> list(filter (range(5), is_even))
[0, 2, 4]

>>> all_odd = (2 * y - 1 for y in range (5))

>>> list(filter(all_odd, is_even))

(]

>>> s = filter (naturals(), is_even)
>>> next(s)

2

>>> next(s)
4

nunn

Generator object

Spring 2018, Exam Prep 4, #4 non-recursive fill-in with nonlocal, dictionaries

2. Consistency is Key Fill in the function below so that it conforms to its docstring.
def ensure_consistency (fn}:

"U"r"Returns a function that calls fn on its argument, returns fn's
return value, and returns None if fn's return value is different
from any of its previous return values for those same argument.
Also returns None i1f more than 20 calls are made.

>>> def consistent(x):

>>> return x

S

>>> 1lst = [1, 2, 3]

>>> def inconsistent (x):
x> return x + lst.pop()
>>>
s g
>>> al(5)

ensure_coconsistency (consistent)

>>> al(bh)
>>> al(6)

>>> al(b)
6
> = ensure_consistency (inconsistent)

b
b(5)

w

>>>
8
>>> b(5)
None
>>> b (6)
-

(

n

Z=
def helper(x):

if :
return

val = fn(x)

if -
z[x] = [val]

if :
return

else:
z[x] =
return

return helper

