
Guerrilla Section 3: Sequences, Data Abstraction, and Trees

Instructions

Form a group of 3-4. Start on Question 0. Check off with a lab assistant when everyone in your
group understands how to solve Question 0. Repeat for Question 1, 2, etc. You're not allowed
to move on from a question until everyone in your group is comfortable with all exercises
in the section. You are allowed to use any and all resources at your disposal, including the
interpreter, lecture notes and slides, discussion notes, and labs. You may consult the lab
assistants, but only after you have asked everyone else in your group. The purpose of this
section is to have all the students working together to learn the material.

Sequences

Question 0
Fill out what python would display at each step if applicable.

Note: (keep in mind list slicing creates a brand new list, does not modify existing list)
i.
>>> lst = [1, 2, 3, 4, 5]
>>> lst[1:3]

>>> lst[0:len(lst)]

>>> lst[-4:]

>>> lst[:3]

>>> lst[3:]

>>> lst[:]

ii. Hint: You can also specify the increment step-size for slicing. The notation is lst[start:end:step].
Remember that a negative step size changes the default start and end.

>>> lst[1:4:2]
>>> lst[0:4:3]

>>> lst[:4:2]

>>> lst[1::2]

>>> lst[::2]

>>> lst[::-1]

>>> lst2 = [6, 1, 0, 7]
>>> lst + lst2

>>> lst + 100

>>> lst3 = [[1], [2], [3]]
>>> lst + lst3

Question 1
Draw the environment diagram that results from running the code below

def reverse(lst):
 if len(lst) <= 1:
 return lst
 return reverse(lst[1:]) + [lst[0]]

lst = [1, [2, 3], 4]
rev = reverse(lst)

EXTRA: Question 2
Write combine_skipper , which takes in a function f and list lst and outputs a list. When
this function takes in a list lst , it looks at the list in chunks of four and applies f to the first two
elements in every set of four elements and replaces the first element with the output of the
function f applied to the two elements as the first value and the index of the second item of the
original two elements as the second value of the new two elements. f takes in a list and outputs
a value. [Assume the length of lst will always be divisible by four]

def combine_skipper(f, lst):

>>> lst = [4, 7, 3, 2, 1, 8, 5, 6]
>>> f = lambda l: sum(l)
>>> lst = combine_skipper(f, lst)
>>> lst
[11, 1, 3, 2, 9, 5, 5, 6]
>>> lst2 = [4, 3, 2, 1]
>>> lst2 = combine_skipper(f, lst2)
>>> lst2
[7, 1, 2, 1]

while n < len(lst) // 4:

return lst

STOP!

Don’t proceed until everyone in your group has finished and understands all exercises!

Mutability

Question 0

a. Name two data types that are mutable. What does it mean to be mutable?

b. Name two data types that are not mutable.

Question 1

a. Will the following code error? Why?

>>> a = 1

>>> b = 2

>>> dt = {a: 1, b: 2}

b. Will the following code error? Why?

>>> a = [1]

>>> b = [2]

>>> dt = {a: 1, b: 2}

Question 2

a. Fill in the output and draw a box-and-pointer diagram for the following code. If an error
occurs, write “Error”, but include all output displayed before the error.

>>> a = [1, [2, 3], 4]

>>> c = a[1]

>>> c

>>> a.append(c)

>>> a

>>> c[0] = 0

>>> c

>>> a

>>> a.extend(c)
>>> c[1] = 9
>>> a

b. Fill in the output and draw a box-and-pointer diagram for the following code. If an error
occurs, write “Error”, but include all output displayed before the error.

>>> lst = [5, 6, 7]

>>> risk = [5, 6, 7]

>>> lst, risk = risk, lst

>>> lst is risk

>>> mist = risk

>>> risk = risk[0:4]

>>> mist.insert(-1, 99)

>>> risk[-1]

Hint: Try drawing the result of [y + 1 for y in mist] first.

>>> risk = [x for x in [y + 1 for y in mist] if x % 10 != 0]

>>> risk

>>> er = [1, 2]

>>> er.extend(risk.pop())

STOP!

Don’t proceed until everyone in your group has finished and understands all exercises in this
section, and you have gotten checked off!

Data Abstraction

Question 1

a. Why are Abstract Data Types useful?

b. What are the two types of functions necessary to make an Abstract Data Type? Describe
what they do.

c. What is a Data Abstraction Violation?

d. Why is it a terrible sin to commit a Data Abstraction Violation?

http://www-inst.eecs.berkeley.edu/~cs61a/fa13/slides/10-Data_6pp.pdf
http://www-inst.eecs.berkeley.edu/~cs61a/fa13/slides/10-Data_6pp.pdf
http://www-inst.eecs.berkeley.edu/~cs61a/fa13/slides/10-Data_6pp.pdf

Question 2

In lecture, we discussed the rational data type, which represents fractions with the
following methods:
• rational(n, d) - constructs a rational number with numerator n, denominator d •
numer(x) - returns the numerator of rational number x
• denom(x) - returns the denominator of rational number x

We also presented the following methods that perform operations with rational numbers:

• add_rationals(x, y)

• mul_rationals(x, y)

• rationals_are_equal(x, y)

You’ll soon see that we can do a lot with just these simple methods in the exercises below.

a. Write a function that returns the given rational number x raised to positive power e.

from math import pow

def rational_pow(x, e):

 """

 >>> r = rational_pow(rational(2, 3), 2)

 >>> numer(r)

 4

 >>> denom(r)

 9

 >>> r2 = rational_pow(rational(9, 72), 0)

 >>> numer(r2)

 1

 >>> denom(r2)

 1

 """

b. Implement the following rational number methods.

def inverse_rational(x):

 """ Returns the inverse of the given non-zero rational number

 >>> r = rational(2, 3)

 >>> r_inv = inverse_rational(r)

 >>> numer(r_inv)

 3

 >>> denom(r_inv)

 2

 >>> r2 = rational_pow(rational(3, 4), 2)

 >>> r2_inv = inverse_rational(r2)

 >>> numer(r2_inv)

 16

 >>> denom(r2_inv)

 9

 """

def div_rationals(x, y): # Hint: Use functions defined in Question 2
 """ Returns x / y for given rational x and non-zero rational y

 >>> r1 = rational(2, 3)

 >>> r2 = rational(3, 2)

 >>> div_rationals(r1, r2)

 [4, 9]

 >>> div_rationals(r1, r1)

 [6, 6]

 """

c. The irrational number e ≈ 2.718 can be generated from an infinite series. Let’s try calculating
it using our rational number data type! The mathematical formula is as follows:

Write a function approx_e that returns a rational number approximation of e to iter amount of
iterations. We’ve provided a factorial function.

def factorial(n):

 If n == 0:

 return 1

 else:

 return n * factorial(n - 1)

def approx_e(iter):

Question 3
Assume that rational, numer, and denom, run without error and work like the ADT defined in
Question 2. Can you identify where the abstraction barrier is broken? Come up with a scenario
where this code runs without error and a scenario where this code would stop working.

def rational(num, den): # Returns a rational number ADT
 #implementation not shown

def numer(x): # Returns the numerator of the given rational
 #implementation not shown

def denom(x): # Returns the denominator of the given rational
 #implementation not shown

def gcd(a, b): # Returns the GCD of two numbers
 #implementation not shown

def simplify(f1): #Simplifies a rational number
 g = gcd(f1[0], f1[1])

 return rational(numer(f1) // g, denom(f1) // g)

def multiply(f1, f2): # Multiples and simplifies two rational numbers
 r = rational(numer(f1) * numer(f2), denom(f1) * denom(f2))

 return simplify(r)

x = rational(1, 2)

y = rational(2, 3)

multiply(x, y)

STOP!

Don’t proceed until everyone in your group has finished and understands all exercises in this

section, and you have gotten checked off!

Trees
Question 0

a. Fill in this implementation of a tree:

def tree(label, branches = []):

 for b in branches:

 assert is_tree(b), 'branches must be trees'

 return [label] + list(branches)

def is_tree(tree):

 if type(tree) != list or len(tree) < 1:

 return False

 for b in branches(tree):

 if not is_tree(b):

 return False

 return True

def label(tree):

def branches(tree):

def is_leaf(tree):

b. A min-heap is a tree with the special property that every node’s value is less than or equal to
the values of all of its children. For example, the following tree is a min-heap:

However, the following tree is not a min-heap because the node with value 3 has a value
greater than one of its children:

Write a function is_min_heap that takes a tree and returns True if the tree is a min-heap and
False otherwise.

def is_min_heap(t):

c. Write a function largest_product_path that finds the largest product path possible. A
product path is defined as the product of all nodes between the root and a leaf. The function
takes a tree as its parameter. Assume all nodes have a nonnegative value.

For example, calling largest_product_path on the above tree would return 42, since 3 * 7 * 2
is the largest product path.

def largest_product_path(tree):

 """

 >>> largest_product_path(None)

 0

 >>> largest_product_path(tree(3))

 3

 >>> t = tree(3, [tree(7, [tree(2)]), tree(8, [tree(1)]), tree(4)])

 >>> largest_product_path(t)

 42

 """

 if not ______________:

 return 0

 elif is_leaf(tree):

 return _____________________

 else:

 paths = [___]

 return _______________________________

STOP!

Don’t proceed until everyone in your group has finished and understands all exercises in this
section, and you have gotten checked off

Challenge Question (Optional)
Come back after finishing everything!

The level-order traversal of a tree is defined as visiting the nodes in each level of a tree before
moving onto the nodes in the next level. For example, the level order of the following tree is,

Level-order: 3 7 8 4

a. Write a function print_level_sorted that takes in a tree as the parameter and returns a list of
the values of the nodes in level order.

def level_order(tree):

 """

 >>> t = tree(3, [tree(7, [tree(2, [tree(8), tree(1)]), tree(5)])])

 >>> level_order(t)

 [3 7 5 2 8 1]

 >>> level_order(tree(3))

 [3]

 >>> level_order(None)

 []

 """

 if not _______________:

 return []

 current_level, next_level = [label(tree)], [tree]

 while ________________:

 find_next = []

 for ______________ in ________________:

 ______________.extend(_____________________________)

 next_level = find_next

 current_level.extend(__)

 return current_level

