
Guerrilla Section 4: Object Oriented Programming, Nonlocal,
Mutable Trees, Linked Lists, Iterators & Generators, and Growth

Instructions
Form a group of 3-4. Start on Question 1. Check off with a lab assistant when everyone in your
group understands how to solve Question 1. Repeat for Question 2, 3, etc. ​You are not
allowed to move on from a question until you check off with a lab assistant. ​​You are
allowed to use any and all resources at your disposal, including the interpreter, lecture notes
and slides, discussion notes, and labs. You may consult the lab assistants, ​but only after you
have asked everyone else in your group. ​The purpose of this section is to have all the
students working together to learn the material.

Object Oriented Programming
Question 0
0a) What is the relationship between a class and an ADT?

0b) Define the following:

Instance

Class

Class Attribute

Instance Attribute

Bound Method

Question 1: What would Python Print?
class Foo():

x = 'bam'

 def __init__(self, x):

 self.x = x

 def baz(self):

 return self.x

class Bar(Foo):

 x = 'boom'

 def __init__(self, x):

 Foo.__init__(self, 'er' + x)

 def baz(self):

 return Bar.x + Foo.baz(self)

foo = Foo('boo')

>>> Foo.x

>>> foo.x

>>> foo.baz()

>>> Foo.baz()

>>> Foo.baz(foo)

>>> bar = Bar('ang')

>>> Bar.x

>>> bar.x

>>> bar.baz()

Question 2: Attend Class
class Student:

def __init__(self, subjects):

self.current_units = 16

self.subjects_to_take = subjects

self.subjects_learned = {}

self.partner = None

def learn(self, subject, units):

print(“I just learned about “ + subject)

self.subjects_learned[subject] = units

self.current_units -= units

def make_friends(self):

if len(self.subjects_to_take) > 3:

print(“Whoa! I need more help!”)

self.partner = Student(self.subjects_to_take[1:])

else:

print(“I’m on my own now!”)

self.partner = None

def take_course(self):

course = self.subjects_to_take.pop()

self.learn(course, 4)

if self.partner:

print(“I need to switch this up!”)

self.partner = self.partner.partner

if not self.partner:

print(“I have failed to make a friend :(“)

What Would Python Print?
It may be helpful to draw an object diagram (You can draw this however you’d like) representing
Tim, and all his attributes (be sure to keep track of all partners and their respective attributes).
The diagram is not required.

>>> tim = Student([“Chem1A”, “Bio1B”, “CS61A”, “CS70”, “CogSci1”])

>>> tim.make_friends()

>>> print(tim.subjects_to_take)

>>> tim.partner.make_friends()

>>> tim.take_course()

>>> tim.partner.take_course()

>>>tim.take_course()

>>> tim.make_friends()

Nonlocal

Question 3: Draw an environment diagram each of the following:

3a)​ ​ore = "settlers"
def sheep(wood):

 def ore(wheat):

 nonlocal ore

 ore = wheat

 ore(wood)

 return ore

sheep(lambda wood: ore)("wheat")

3b) ​aang = 120
def airbend(zuko):

 aang = 2

 def katara(aang):

 nonlocal zuko

 zuko = lambda sokka : aang + 4

 return aang

 if zuko(10) == 1:

 katara(aang + 9)

 return zuko(airbend)

airbend(lambda x: aang + 1)

Question 4

Write ​make_max_finder ​, which takes in no arguments but returns a function which takes in a
list. The function it returns should return the maximum value it’s been called on so far, including
the current list and any previous list. You can assume that any list this function takes in will be
nonempty and contain only non-negative values.

def make_max_finder():

"""

>>> m = make_max_finder()

>>> m([5, 6, 7])

7

>>> m([1, 2, 3])

7

>>> m([9])

9

>>> m2 = make_max_finder()

>>> m2([1])

1

"""

Mutable Trees

Question 8
Use following definition of a tree to answer the questions below:
class Tree:

 def __init__(self, label, branches=[]):

 self.label = label

 for branch in branches:

assert isinstance(branch, Tree)

 self.branches = list(branches)

 def __repr__(self):

 if self.branches:

 branches_str = ', ' + repr(self.branches)

 else:

 branches_str = ''

 return 'Tree({0}{1})'.format(self.entry, branches_str)

 def is_leaf(self): # a leaf has no branches

 return len(self.branches) == 0

8a) Define ​filter_tree ​, which takes in a tree​ ​t ​ ​and one argument predicate function​ ​fn ​. It
should mutate the tree by removing all branches of any node where calling​ ​fn ​ on its label
returns​ ​False ​. In addition, if this node is not the root of the tree, it should remove that node
from the tree as well.

def filter_tree(t, fn):

 """

 >>> t = Tree(1, [Tree(2), Tree(3, [Tree(4)]), Tree(6,

[Tree(7)])])

 >>> filter_tree(t, lambda x: x % 2 != 0)

 >>> t

 tree(1, [Tree(3)])

 >>> t2 = Tree(2, [Tree(3), Tree(4), Tree(5)])

 >>> filter_tree(t2, lambda x: x != 2)

 >>> t2

 Tree(2)

 """

 if not fn(t.label):

 else:

 for ___________________:

 if _____________________:

 else:

8b) Fill in the definition for ​nth_level_tree_map ​, which also takes in a function and a tree,
but mutates the tree by applying the function to every ​n ​th level in the tree, where the root is the
0th level.
def nth_level_tree_map(fn, tree, n):

 """Mutates a tree by mapping a function all the elements of a

tree.

 >>> tree = Tree(1, [Tree(7, [Tree(3), Tree(4), Tree(5)]),

 Tree(2, [Tree(6), Tree(4)])])

 >>> nth_level_tree_map(lambda x: x + 1, tree, 2)

 >>> tree

 Tree(2, [Tree(7, [Tree(4), Tree(5), Tree(6)]),

 Tree(2, [Tree(7), Tree(5)])])

 """

Extra Challenge Question 9: Photosynthesis
9a) Fill in the methods below, so that the classes interact correctly according to the
documentation (make sure to keep track of all the counters!).
"""

>>> p = Plant()

>>> p.height

1

>>> p.materials

[]

>>> p.absorb()

>>> p.materials

[|Sugar|]

>>> Sugar.sugars_created

1

>>> p.leaf.sugars_used

0

>>> p.grow()

>>> p.materials

[]

>>> p.height

2

>>> p.leaf.sugars_used

1

"""

class Plant:

def __init__(self):

"""A Plant has a Leaf, a list of sugars created so far,

and an initial height of 1"""

###Write your code here###

def absorb(self):

"""Calls the leaf to create sugar"""

###Write your code here###

def grow(self):

"""A Plant uses all of its sugars, each of which increases

its height by 1"""

###Write your code here###

class Leaf:

def __init__(self, plant): # Source is a Plant instance

"""A Leaf is initially alive, and keeps track of how many

sugars it has created"""

###Write your code here###

def absorb(self):

"""If this Leaf is alive, a Sugar is added to the plant’s

list of sugars"""

if self.alive:

###Write your code here###

class Sugar:

sugars_created = 0

def __init__(self, leaf, plant):

###Write your code here###

def activate(self):

"""A sugar is used, then removed from the Plant which

contains it"""

###Write your code here###

def __repr__(self):

return ‘|Sugar|’

9b) (​Optional -- only do if time at the end!​​) Let's make this a little more realistic by giving
these objects ages. Modify the code above to satisfy the following conditions. See the doctest
for further guidance.

1) Every plant and leaf should have an age, but sugar does not age. Plants have a
lifetime of 20 time units, and leaves have a lifetime of 2 time units.

2) Time advances by one unit at the end of a call to a plant's absorb or grow method.
3) Every time a leaf dies, it spawns a new leaf on the plant. When a plant dies, its leaf
dies, and the plant becomes a zombie plant--no longer subject to time. Zombie plants do
not age or die.

4) Every time a generation of leaves dies for a zombie plant, twice as many leaves rise
from the organic matter of its ancestors--defying scientific explanation.

"""

>>> p = Plant()

>>> p.age

0

>>> p.leaves

[|Leaf|]

>>> p.leaves[0].age

0

>>> p.age = 18

>>> p.age

18

>>> p.height

1

>>> p.absorb()

>>> p.materials

[|Sugar|]

>>> p.age

19

>>> p.leaves[0].age

1

>>> p.grow()

>>> p.age

20

>>> p.is_zombie

True

>>>p.leaves

[|Leaf|, |Leaf|]

>>> p.leaves[0].age

0

>>> p.absorb()

>>> p.age

20

"""
You will only need to make changes to the Plant and Leaf classes.

class Plant:

 def __init__(self):

 """A Plant has a Leaf, a list of sugars created so far,

 and an initial height of 1"""

 ​ self.materials = []
 self.height = 1

 ###Write your code here###

 def absorb(self):

 """Calls the leaf to create sugar"""

 ###Write your code here###

 def grow(self):

"""A Plant uses all of its sugars,each of which increases

its height by 1"""

 for sugar in self.materials:

sugar.activate()

self.height += 1

 ​###Write your code here###

def death(self):

###Write your code here###

class Leaf:

 def __init__(self, plant): # plant is a Plant instance

"""A Leaf is initially alive, and keeps track of how many

sugars it has created"""

self.alive = True

 self.sugars_used = 0

 self.plant = plant

 ###Write your code here###

 def absorb(self):

"""If this Leaf is alive, a Sugar is added to the plant’s

list of sugars"""

 if self.alive:

 self.plant.materials.append(Sugar(self, self.plant))

 ​###Write your code here###

 def death(self):

 ###Write your code here###

def __repr__(self):

return ‘|Leaf|’

Linked Lists

0a)​​ What is a linked list? Why do we consider it a naturally recursive structure?

0b) ​​Draw a box and pointer diagram for the following:

Link('c', Link(Link(6, Link(1, Link('a'))), Link('s')))

Question 1: The ​Link ​class can represent lists with cycles. That is, a list may contain itself as a
sublist.

>>> s = Link(1, Link(2, Link(3)))

>>> s.rest.rest.rest = s

>>> s.rest.rest.rest.rest.rest.first

3

Implement ​has_cycle ​that returns whether its argument, a ​Link ​instance, contains a cycle.
There are two ways to do this, both iteratively, either with two pointers or keeping track of ​Link
objects we've seen already. Try to come up with both!

def has_cycle(link):

 """

 >>> s = Link(1, Link(2, Link(3)))

 >>> s.rest.rest.rest = s

 >>> has_cycle(s)

 True

 """

Question 2: Fill in the following function, which checks to see if a particular sequence of items in
one linked list, ​sub_link ​ can be found in another linked list ​link ​ (the items have to be in
order, but not necessarily consecutive).

def seq_in_link(link, sub_link):

 """

 >>> lnk1 = Link(1, Link(2, Link(3, Link(4))))

 >>> lnk2 = Link(1, Link(3))

 >>> lnk3 = Link(4, Link(3, Link(2, Link(1))))

 >>> seq_in_link(lnk1, lnk2)

 True

 >>> seq_in_link(lnk1, lnk3)

 False

 """

 if sub_link is Link.empty:

 if link is Link.empty:

 if link.first == __________________

 else:

Iterators & Generators

1. Generator WWPD
>>> def g(n):

while n > 0:

if n % 2 == 0:

yield n

else:

print(‘odd’)

n -= 1

>>> t = g(4)

>>> t

>>> next(t)

>>> n

>>> t = g(next(t) + 5)

>>> next(t)

2. Write a generator function ​gen_inf ​that returns a generator which yields all the numbers in
the provided list one by one in an infinite loop. Write your solution to the right.

>>> t = gen_inf([3, 4, 5])

>>> next(t)

3

>>> next(t)

4

>>> next(t)

5

>>> next(t)

3

>>> next(t)

4

def gen_inf(lst):

3. Write a function ​nested_gen​ which, when given a nested list of iterables (including
generators) ​lst​, will return a generator that yields all elements nested within ​lst​ in order.
Assume you have already implemented ​is_iter​, which takes in one argument and returns
True​ if the passed in value is an iterable and ​False​ if it is not.

def nested_gen(lst):

'''

>>> a = [1, 2, 3]

>>> def g(lst):

>>> for i in lst:

>>> yield i

>>> b = g([10, 11, 12])

>>> c = g([b])

>>> lst = [a, c, [[[2]]]]

>>> list(nested_gen(lst))

[1, 2, 3, 10, 11, 12, 2]

'''

if _________________________________:

else:

4. Write a function that, when given an iterable ​lst​, returns a generator object. This generator
should iterate over every element of ​lst​, checking each element to see if it has been changed
to a different value from when ​lst​ was originally passed into the generator function. If an
element has been changed, the generator should yield it. If the length of ​lst​ is changed to a
different value from when it was passed into the function, and ​next​ is called on the generator,
the generator should stop iteration.

def mutated_gen(lst):

'''

>>> lst = [1, 2, 3, 4, 5]

>>> gen = mutated_gen(lst)

>>> lst[1] = 7

>>> next(gen)

7

>>> lst[0] = 5

>>> lst[2] = 3

>>> lst[3] = 9

>>> lst[4] = 2

>>> next(gen)

9

>>> lst.append(6)

>>> next(gen)

StopIteration Exception

'''

curr = ________

while __________________:

if ______________________:

break

else:

yield ____________________

return _____________________

Growth

Question 0

What are the runtimes of the following?

def one(n):

 if 1 == 1:

 return None

 else:

 return n

a​​) θ(1) b) θ(log n) c) θ(n) d) θ(n​2​) e) θ(2​n​)

def two(n):

 for i in range(n):

 print(n)

a) ​​θ(1) b) θ(log n) c) θ(n) d) θ(n​2​) e) θ(2​n​)

def three(n):

 while n > 0:

 n = n // 2

a) ​​θ(1) b) θ(log n) c) θ(n) d) θ(n​2​) e) θ(2​n​)

def four(n):

 for i in range(n):

 for j in range(i):

 print(str(i), str(j))

a) ​​θ(1) b) θ(log n) c) θ(n) d) θ(n​2​) e) θ(2​n​)

