
Scheme

Instructions

Form a group of 3-4. Start on Question 0. Check off with a lab assistant when everyone in your
group understands how to solve Question 0. Repeat for Question 1, 2, etc. ​You're not allowed
to move on from a question until you check off with a lab assistant. ​​You are allowed to use
any and all resources at your disposal, including the interpreter, lecture notes and slides,
discussion notes, and labs. You may consult the lab assistants, ​but only after you have asked
everyone else in your group. ​The purpose of this section is to have all the students
working together to learn the material.

Scheme

Question 0

What will Scheme output? Draw the box and pointer whenever the expression evaluates to
some pair or list.
> (or 'false (/ 1 0) 'true)

> '(1 2 3)

> '(1 . (2 . (3 . ())))

> '(((1 . 2) . 3) 4 . (5 . 6))

> (cons 1 2)

> (cons 2 '())

> (cons 1 (cons 2 '()))

> (cons 1 (cons 2 3))

> (cons (cons (car '(1 2 3)) (list 2 3 4))

 (cons 2 3))

> (cadar '((1 2) 3 (4 5)))

> (caddr '((1 2) 3 (4 5)))

> (cddar '((1 2) 3 (4 5)))

> (cddr '((1 2) 3 (4 5)))

Question 1

> (sum-every-other '(1 2 3))

4

> (sum-every-other '())

0

> (sum-every-other '(1 2 3 4))

4

> (sum-every-other '(1 2 3 4 5))

9

Spot the bug(s). Test your answer in the interpreter before talking with a lab assistant/tutor.
(define (sum-every-other lst)

 (cond ((null? lst) lst)

 (else (+ (cdr lst)

 (sum-every-other (caar lst)))))

Question 2

2a.​​ Define ​append ​. ​In Scheme, ​​append​​ takes in two lists and makes a larger list.
> (append '(1 2 3) '(4 5 6))

(1 2 3 4 5 6)

2b.​​ Define ​reverse ​. Hint: use ​append ​.
> (reverse '(1 2 3))

(3 2 1)

2c.​​ Define ​reverse ​ without using ​append ​. Hint: use a helper function and ​cons ​.

Question 3

3a.​​ Define ​add-to-all ​.
> (add-to-all 'foo '((1 2) (3 4) (5 6)))

((foo 1 2) (foo 3 4) (foo 5 6))

2b.​​ Define map.
> (map (lambda (x) (+ x 1)) '(1 2 3))

(2 3 4)

3c.​​ Define ​add-to-all ​ using one call to ​map ​. Hint: this may require a lambda.

Question 4

Define ​sublists ​. Hint: use ​add-to-all ​.
> (sublists '(1 2 3))

(() (3) (2) (2 3) (1) (1 3) (1 2) (1 2 3))

Question 5

Define ​sixty-ones ​. Return the number of times that 1 follows 6 in the list.
> (sixty-ones '(4 6 1 6 0 1))

1

> (sixty-ones '(1 6 1 4 6 1 6 0 1))

2

> (sixty-ones '(6 1 6 1 4 6 1 6 0 1))

3

Question 6

Define ​no-elevens ​. Return a list of all distinct length-n lists of 1s and 6s that do not contain 1
after 1.
> (no-elevens 2)

((6 6) (6 1) (1 6))

> (no-elevens 3)

((6 6 6) (6 6 1) (6 1 6) (1 6 6) (1 6 1))

> (no-elevens 4)

((6 6 6 6) (6 6 6 1) (6 6 1 6) (6 1 6 6) (6 1 6 1) (1 6 6 6) (1 6 6

1) (1 6 1 6))

Exceptions
Question 1
How do we raise exceptions in Python? What type are Exceptions?

Question 2
How do we handle raised exceptions? And why would we need to do so?

