
Guerilla Section Week 6 Worksheet
Streams, Tail Recursion, Interpreters, Macros

Streams
1. Streams WWSD

scm> (define a (cons-stream 4 (cons-stream 6 (cons-stream 8 a))))

scm> (car a)

scm> (cdr a)

scm> (cdr-stream a)

scm> (define b (cons-stream 10 a))

scm> (cdr b)

scm> (cdr-stream b)

scm> (define c (cons-stream 3 (cons-stream 6)))

scm> (cdr-stream c)

What elements of a, b, and c have been evaluated thus far?

2. Write a function merge that takes in two sorted infinite streams and returns a new infinite
stream containing all the elements from both streams, in sorted order.

(define (merge s1 s2)

3. Write a function half_twos_factorial that returns a new stream containing all of the
factorials that contain the digit 2 divided by two. Your solution must use only the following
functions, without defining any additional ones. Likewise, any lambda expressions should
contain only calls to the following functions or built in functions.

; Returns a new Stream where each new value is the result of calling

; fn on the value in the stream s

(define (map-stream s fn)

(if (null? s) s

(cons-stream (fn (car s)) (map-stream (cdr-stream s)

fn))))

; Returns a new Stream containing all values in the stream s that

; satisfy the predicate fn

(define (filter-stream s fn)

(cond ((null? s) s)

((fn (car s)) (cons-stream (car s) (filter-stream

(cdr-stream s) fn)))

(else (filter-stream (cdr-stream s) fn))))

; Returns True if n contains the digit 2. False otherwise

(define (contains-two n)

(cond ((= n 0) #f)

((= (remainder n 10) 2) #t)

(else (contains-two (quotient n 10)))))

; Returns the factorial n

(define (factorial n)

(if (= n 0) 1 (* n (factorial (- n 1)))))

; Returns a stream of factorials

(define (factorial-stream)

(define (helper n)

(cons-stream (factorial n) (helper (+ n 1))))

(helper 1))

Fill in the skeleton below.

(define (half-twos-factorial)

 ___)

Tail Recursion

1. For the following procedures, determine whether or not they are tail recursive. If they are not,
write why they aren’t and rewrite the function to be tail recursive to the right.

; Multiplies x by y

(define (mult x y)

(if (= 0 y)

0

(+ x (mult x (- y 1))))

; Always evaluates to true

; assume n is positive

(define (true1 n)

(if (= n 0)

#t

(and #t (true1 (- n 1)))))

; Always evaluates to true

; assume n is positive

(define (true2 n)

(if (= n 0)

#t

(or (true2 (- n 1)) #f)))

; Returns true if x is in lst

(define (contains lst x)

(cond ((null? lst) #f)

((equal? (car lst) x) #t)

((contains (cdr lst) x) #t)

(else #f)))

2. Rewrite this function tail-recursively.

; Returns a list of pairs, the ith pair has item as its car and the

; ith element of lst as its cdr

(define (add-to-all item lst)

(if (null? lst)

lst

 (cons (cons item (car lst))

 (add-to-all item (cdr lst)))))

3. Implement sum-satisfied-k which, given an input list lst, a predicate procedure f which
takes in one argument, and an integer k, will return the sum of the first k elements that satisfy f.
If there are not k such elements, return 0.

; Doctests

scm> (define lst `(1 2 3 4 5 6))

scm> (sum-satisfied-k lst even? 2) ; 2 + 4

6

scm> (sum-satisfied-k lst (lambda (x) (= 0 (modulo x 3))) 10)

0

scm> (sum-satisfied-k lst (lambda (x) #t) 0)

0

Implement sum-satisfied-k tail recursively.

(define (sum-satisfied-k lst f k)

4. Implement remove-range which, given one input list lst, and two nonnegative integers i and
j, returns a new list containing the elements of lst in order, without the elements from index i
to index j inclusive. You may assume j > i, and j is less than the length of the list. (Hint: you
may want to use the built-in append function, which returns the result of appending the items of
all lists in order into a single well-formed list.)

; Doctests

scm> (remove-range ‘(0 1 2 3 4) 1 3)

(0 4)

(define (remove-range lst i j)

Now implement remove-range tail recursively.

(define (remove-range lst i j)

Interpreters

1. For the following questions, circle the number of calls to scheme_eval and the number of
calls to scheme_apply:

scm> (+ 1 2)

3

Calls to scheme_eval : 1 | 3 | 4 | 6

Calls to scheme_apply : 1 | 2 | 3 | 4

scm> (if 1 (+ 2 3) (/ 1 0))

5

Calls to scheme_eval : 1 | 3 | 4 | 6

Calls to scheme_apply : 1 | 2 | 3 | 4

scm> (or #f (and (+ 1 2) ‘apple) (- 5 2))

apple

Calls to scheme_eval : 6 | 8 | 9 | 10

Calls to scheme_apply : 1 | 2 | 3 | 4

scm> (define (add x y) (+ x y))

add

scm> (add (- 5 3) (or 0 2))

2

Calls to scheme_eval : 12 | 13 | 14 | 15

Calls to scheme_apply : 1 | 2 | 3 | 4

Macros

Question 0

What will Scheme output? If you think it errors, write Error.

scm> (define-macro (doierror) (/ 1 0))

scm>(doierror)

scm> (define x 5)

scm> (define-macro (evaller y) (list (list 'lambda '(x) x)) y)

scm> (evaller 2)

Question 1
Consider a new special form, when, that has the following structure:
(when <condition

<expr1> <expr2> <expr3> ...)
If the condition is not false (a truthy expression), all the subsequent operands are evaluated in
order and the value of the last expression is returned. Otherwise, the entire when expression
evaluates to okay.
scm> (when (= 1 0)(/1 0) 'error)

okay

scm> (when (= 1 1) (print 6) (print 1) 'a)

6

1

a

Create this new special form using a macro. Recall that putting a dot before the last formal
parameter allows you to pass any number of arguments to a procedure, a list of which will be
bound to the parameter, similar to (*args) in Python.
a) Fill in the skeleton below to implement this without using quasiquotes.
(define-macro (when condition . exprs)
(list 'if __))

b) Now, implement the macro using quasiquotes.
(define-macro (when condition . exprs)
`(if __))

Question 2
The goal of this question is to define a macro that represents a while loop. Since this is a difficult
task we will break it into parts.

2a
Write tail-recursive factorial:
(define (fact n)

)

2b
Using the above problem to assist implementation, create the while macro. This macro will
accept 4 arguments:

- initial-bindings: this will represent initialization values for variables in the loop
- condition: this will represent the condition which the while loop should continue to check

to see if the loop should continue
- return: after the loop has ended this represents the value that should be returned

You may find the built-in map function useful for this problem:
scm > (map (lambda (x) (* 2 x)) ‘(1 2 3))

(2 4 6)

And here’s an example of the while macro being used to calculate the factorial:
scm > (define (fact n)

(while

((acc 1) (n n))

(> n 0)

((* acc n) (- n 1))

acc))

fact

scm> (fact 4)

24

Fill in the following macro definition:

(define-macro (while initial-bindings condition updates return)

 (define helper-vars

___)

 (define initial-vals

__)

 (list 'begin

 (list 'define (cons 'helper

_________________________________)

 `(if __

 __

__)

__))

CONGRATULATIONS!
You made it to the end of the worksheet! Great work.

