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Function Currying

def make_adder(n): 
    return lambda k: n + k

>>> make_adder(2)(3) 
5 
>>> add(2, 3) 
5

There's a general 
relationship between 

these functions

Curry: Transform a multi-argument function into a single-argument, higher-order function

!12
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Decorators



Function Decorators

(Demo)

!14



Function Decorators

(Demo)

@trace1 
def triple(x): 
    return 3 * x 

!14



Function Decorators

(Demo)

@trace1 
def triple(x): 
    return 3 * x 

Function 
decorator

!14



Function Decorators

(Demo)

@trace1 
def triple(x): 
    return 3 * x 

Decorated 
function

Function 
decorator

!14



Function Decorators

(Demo)

@trace1 
def triple(x): 
    return 3 * x 

is identical to 

Decorated 
function

Function 
decorator

!14



Function Decorators

(Demo)

@trace1 
def triple(x): 
    return 3 * x 

is identical to 

def triple(x): 
    return 3 * x 
triple = trace1(triple) 

Decorated 
function

Function 
decorator

!14



Function Decorators

(Demo)

@trace1 
def triple(x): 
    return 3 * x 

is identical to 

def triple(x): 
    return 3 * x 
triple = trace1(triple) 

Decorated 
function

Why not just 
use this?

Function 
decorator
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