
Function Examples

Announcements

Hog Contest Rules

!3cs61a.org/proj/hog_contest

Hog Contest Rules
• Up to two people submit one entry;
Max of one entry per person

!3cs61a.org/proj/hog_contest

Hog Contest Rules
• Up to two people submit one entry;
Max of one entry per person

• Slight rule changes

!3cs61a.org/proj/hog_contest

Hog Contest Rules
• Up to two people submit one entry;
Max of one entry per person

• Slight rule changes
• Your score is the number of entries
against which you win more than
50.00001% of the time

!3cs61a.org/proj/hog_contest

Hog Contest Rules
• Up to two people submit one entry;
Max of one entry per person

• Slight rule changes
• Your score is the number of entries
against which you win more than
50.00001% of the time

• Strategies are time-limited

!3cs61a.org/proj/hog_contest

Hog Contest Rules
• Up to two people submit one entry;
Max of one entry per person

• Slight rule changes
• Your score is the number of entries
against which you win more than
50.00001% of the time

• Strategies are time-limited
• All strategies must be deterministic,
pure functions of the players' scores

!3cs61a.org/proj/hog_contest

Hog Contest Rules
• Up to two people submit one entry;
Max of one entry per person

• Slight rule changes
• Your score is the number of entries
against which you win more than
50.00001% of the time

• Strategies are time-limited
• All strategies must be deterministic,
pure functions of the players' scores

• All winning entries will receive
extra credit

!3cs61a.org/proj/hog_contest

Hog Contest Rules
• Up to two people submit one entry;
Max of one entry per person

• Slight rule changes
• Your score is the number of entries
against which you win more than
50.00001% of the time

• Strategies are time-limited
• All strategies must be deterministic,
pure functions of the players' scores

• All winning entries will receive
extra credit

• The real prize: honor and glory

!3cs61a.org/proj/hog_contest

Hog Contest Rules
• Up to two people submit one entry;
Max of one entry per person

• Slight rule changes
• Your score is the number of entries
against which you win more than
50.00001% of the time

• Strategies are time-limited
• All strategies must be deterministic,
pure functions of the players' scores

• All winning entries will receive
extra credit

• The real prize: honor and glory
• See website for detailed rules

!3cs61a.org/proj/hog_contest

Hog Contest Rules
• Up to two people submit one entry;
Max of one entry per person

• Slight rule changes
• Your score is the number of entries
against which you win more than
50.00001% of the time

• Strategies are time-limited
• All strategies must be deterministic,
pure functions of the players' scores

• All winning entries will receive
extra credit

• The real prize: honor and glory
• See website for detailed rules

!3cs61a.org/proj/hog_contest

Kaylee Mann 
Yan Duan & Ziming Li 
Brian Prike & Zhenghao Qian 
Parker Schuh & Robert Chatham

Fall 2011 Winners

Hog Contest Rules
• Up to two people submit one entry;
Max of one entry per person

• Slight rule changes
• Your score is the number of entries
against which you win more than
50.00001% of the time

• Strategies are time-limited
• All strategies must be deterministic,
pure functions of the players' scores

• All winning entries will receive
extra credit

• The real prize: honor and glory
• See website for detailed rules

!3cs61a.org/proj/hog_contest

Kaylee Mann 
Yan Duan & Ziming Li 
Brian Prike & Zhenghao Qian 
Parker Schuh & Robert Chatham

Fall 2011 Winners

Chenyang Yuan
Joseph Hui

Fall 2012 Winners

Hog Contest Rules
• Up to two people submit one entry;
Max of one entry per person

• Slight rule changes
• Your score is the number of entries
against which you win more than
50.00001% of the time

• Strategies are time-limited
• All strategies must be deterministic,
pure functions of the players' scores

• All winning entries will receive
extra credit

• The real prize: honor and glory
• See website for detailed rules

!3cs61a.org/proj/hog_contest

Kaylee Mann 
Yan Duan & Ziming Li 
Brian Prike & Zhenghao Qian 
Parker Schuh & Robert Chatham

Fall 2011 Winners

Chenyang Yuan
Joseph Hui

Fall 2012 Winners

Paul Bramsen
Sam Kumar & Kangsik Lee
Kevin Chen

Fall 2013 Winners

Hog Contest Rules
• Up to two people submit one entry;
Max of one entry per person

• Slight rule changes
• Your score is the number of entries
against which you win more than
50.00001% of the time

• Strategies are time-limited
• All strategies must be deterministic,
pure functions of the players' scores

• All winning entries will receive
extra credit

• The real prize: honor and glory
• See website for detailed rules

!3cs61a.org/proj/hog_contest

Kaylee Mann 
Yan Duan & Ziming Li 
Brian Prike & Zhenghao Qian 
Parker Schuh & Robert Chatham

Fall 2011 Winners

Chenyang Yuan
Joseph Hui

Fall 2012 Winners

Paul Bramsen
Sam Kumar & Kangsik Lee
Kevin Chen

Fall 2013 Winners

Alan Tong & Elaine Zhao
Zhenyang Zhang
Adam Robert Villaflor & Joany Gao
Zhen Qin & Dian Chen
Zizheng Tai & Yihe Li

Fall 2014 Winners

Hog Contest Winners

!4

Sinho Chewi & Alexander Nguyen Tran
Zhaoxi Li
Stella Tao and Yao Ge

Spring 2015 Winners

Micah Carroll & Vasilis Oikonomou 
Matthew Wu 
Anthony Yeung and Alexander Dai

Fall 2015 Winners

Spring 2016 Winners

Michael McDonald and Tianrui Chen
Andrei Kassiantchouk
Benjamin Krieges

Spring 2017 Winners

Cindy Jin and Sunjoon Lee
Anny Patino and Christian Vasquez
Asana Choudhury and Jenna Wen
Michelle Lee and Nicholas Chew

Fall 2017 Winners 
 
Alex Yu and Tanmay Khattar
James Li
Justin Yokota

Your name could be here FOREVER!

Spring 2018 Winners

Eric James Michaud
Ziyu Dong
Xuhui Zhou

Fall 2018 Winners

Abstraction

Functional Abstractions

!6

Functional Abstractions

def square(x):
 return mul(x, x)

!6

Functional Abstractions

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

!6

Functional Abstractions

What does sum_squares need to know about square?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

!6

Functional Abstractions

•Square takes one argument.

What does sum_squares need to know about square?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

!6

Functional Abstractions

•Square takes one argument. Yes

What does sum_squares need to know about square?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

!6

Functional Abstractions

•Square takes one argument.

•Square has the intrinsic name square.

Yes

What does sum_squares need to know about square?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

!6

Functional Abstractions

•Square takes one argument.

•Square has the intrinsic name square.

Yes

No

What does sum_squares need to know about square?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

!6

Functional Abstractions

•Square takes one argument.

•Square has the intrinsic name square.

•Square computes the square of a number.

Yes

No

What does sum_squares need to know about square?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

!6

Functional Abstractions

•Square takes one argument.

•Square has the intrinsic name square.

•Square computes the square of a number.

Yes

No

Yes

What does sum_squares need to know about square?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

!6

Functional Abstractions

•Square takes one argument.

•Square has the intrinsic name square.

•Square computes the square of a number.

•Square computes the square by calling mul.

Yes

No

Yes

What does sum_squares need to know about square?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

!6

Functional Abstractions

•Square takes one argument.

•Square has the intrinsic name square.

•Square computes the square of a number.

•Square computes the square by calling mul.

Yes

No

Yes

No

What does sum_squares need to know about square?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

!6

Functional Abstractions

•Square takes one argument.

•Square has the intrinsic name square.

•Square computes the square of a number.

•Square computes the square by calling mul.

def square(x):
 return pow(x, 2)

Yes

No

Yes

No

What does sum_squares need to know about square?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

!6

Functional Abstractions

•Square takes one argument.

•Square has the intrinsic name square.

•Square computes the square of a number.

•Square computes the square by calling mul.

def square(x):
 return pow(x, 2)

def square(x):
 return mul(x, x-1) + x

Yes

No

Yes

No

What does sum_squares need to know about square?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

!6

Functional Abstractions

•Square takes one argument.

•Square has the intrinsic name square.

•Square computes the square of a number.

•Square computes the square by calling mul.

def square(x):
 return pow(x, 2)

def square(x):
 return mul(x, x-1) + x

If the name “square” were bound to a built-in function,
sum_squares would still work identically.

Yes

No

Yes

No

What does sum_squares need to know about square?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

!6

Choosing Names

!7

Choosing Names

Names typically don’t matter for correctness

but

they matter a lot for composition

!7

Choosing Names

Names typically don’t matter for correctness

but

they matter a lot for composition

!7

Names should convey the meaning or purpose
of the values to which they are bound.

Choosing Names

Names typically don’t matter for correctness

but

they matter a lot for composition

!7

Names should convey the meaning or purpose
of the values to which they are bound.

The type of value bound to the name is best
documented in a function's docstring.

Choosing Names

Names typically don’t matter for correctness

but

they matter a lot for composition

!7

Names should convey the meaning or purpose
of the values to which they are bound.

The type of value bound to the name is best
documented in a function's docstring.

Function names typically convey their effect
(print), their behavior (triple), or the
value returned (abs).

From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter a lot for composition

!7

Names should convey the meaning or purpose
of the values to which they are bound.

The type of value bound to the name is best
documented in a function's docstring.

Function names typically convey their effect
(print), their behavior (triple), or the
value returned (abs).

From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter a lot for composition

true_false rolled_a_one

!7

Names should convey the meaning or purpose
of the values to which they are bound.

The type of value bound to the name is best
documented in a function's docstring.

Function names typically convey their effect
(print), their behavior (triple), or the
value returned (abs).

From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter a lot for composition

true_false rolled_a_one

d dice

!7

Names should convey the meaning or purpose
of the values to which they are bound.

The type of value bound to the name is best
documented in a function's docstring.

Function names typically convey their effect
(print), their behavior (triple), or the
value returned (abs).

From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter a lot for composition

true_false rolled_a_one

d dice

helper take_turn

!7

Names should convey the meaning or purpose
of the values to which they are bound.

The type of value bound to the name is best
documented in a function's docstring.

Function names typically convey their effect
(print), their behavior (triple), or the
value returned (abs).

From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter a lot for composition

true_false rolled_a_one

d dice

helper take_turn

!7

Names should convey the meaning or purpose
of the values to which they are bound.

The type of value bound to the name is best
documented in a function's docstring.

Function names typically convey their effect
(print), their behavior (triple), or the
value returned (abs).

my_int num_rolls

From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter a lot for composition

true_false rolled_a_one

d dice

helper take_turn

!7

Names should convey the meaning or purpose
of the values to which they are bound.

The type of value bound to the name is best
documented in a function's docstring.

Function names typically convey their effect
(print), their behavior (triple), or the
value returned (abs).

my_int num_rolls

l, I, O k, i, m

Which Values Deserve a Name

Reasons to add a new name

!8

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

!8

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:
 x = x + sqrt(square(a) + square(b))

!8

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:
 x = x + sqrt(square(a) + square(b))

hypotenuse = sqrt(square(a) + square(b))
if hypotenuse > 1:
 x = x + hypotenuse

!8

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:
 x = x + sqrt(square(a) + square(b))

Meaningful parts of complex expressions:

hypotenuse = sqrt(square(a) + square(b))
if hypotenuse > 1:
 x = x + hypotenuse

!8

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:
 x = x + sqrt(square(a) + square(b))

Meaningful parts of complex expressions:

x1 = (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)

hypotenuse = sqrt(square(a) + square(b))
if hypotenuse > 1:
 x = x + hypotenuse

!8

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:
 x = x + sqrt(square(a) + square(b))

Meaningful parts of complex expressions:

x1 = (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)

hypotenuse = sqrt(square(a) + square(b))
if hypotenuse > 1:
 x = x + hypotenuse

discriminant = square(b) - 4 * a * c
x1 = (-b + sqrt(discriminant)) / (2 * a)

!8

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:
 x = x + sqrt(square(a) + square(b))

Meaningful parts of complex expressions:

x1 = (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)

hypotenuse = sqrt(square(a) + square(b))
if hypotenuse > 1:
 x = x + hypotenuse

discriminant = square(b) - 4 * a * c
x1 = (-b + sqrt(discriminant)) / (2 * a)

!8

More Naming Tips

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:
 x = x + sqrt(square(a) + square(b))

Meaningful parts of complex expressions:

x1 = (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)

hypotenuse = sqrt(square(a) + square(b))
if hypotenuse > 1:
 x = x + hypotenuse

discriminant = square(b) - 4 * a * c
x1 = (-b + sqrt(discriminant)) / (2 * a)

!8

More Naming Tips

• Names can be long if they help
document your code: 
 
average_age = average(age, students)  
 
is preferable to 
 
Compute average age of students 
aa = avg(a, st)

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:
 x = x + sqrt(square(a) + square(b))

Meaningful parts of complex expressions:

x1 = (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)

hypotenuse = sqrt(square(a) + square(b))
if hypotenuse > 1:
 x = x + hypotenuse

discriminant = square(b) - 4 * a * c
x1 = (-b + sqrt(discriminant)) / (2 * a)

!8

More Naming Tips

• Names can be long if they help
document your code: 
 
average_age = average(age, students)  
 
is preferable to 
 
Compute average age of students 
aa = avg(a, st)

• Names can be short if they represent
generic quantities: counts,
arbitrary functions, arguments to
mathematical operations, etc. 
 
n, k, i - Usually integers 
x, y, z - Usually real numbers 
f, g, h - Usually functions

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:
 x = x + sqrt(square(a) + square(b))

Meaningful parts of complex expressions:

x1 = (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)

hypotenuse = sqrt(square(a) + square(b))
if hypotenuse > 1:
 x = x + hypotenuse

discriminant = square(b) - 4 * a * c
x1 = (-b + sqrt(discriminant)) / (2 * a)

!8

More Naming Tips

• Names can be long if they help
document your code: 
 
average_age = average(age, students)  
 
is preferable to 
 
Compute average age of students 
aa = avg(a, st)

• Names can be short if they represent
generic quantities: counts,
arbitrary functions, arguments to
mathematical operations, etc. 
 
n, k, i - Usually integers 
x, y, z - Usually real numbers 
f, g, h - Usually functions

PRAC
TICA

L

GUID
ELIN

ES

Testing

Test-Driven Development

!10

Test-Driven Development

Write the test of a function before you write the function.

!10

Test-Driven Development

Write the test of a function before you write the function.

A test will clarify the domain, range, & behavior of a function.

!10

Test-Driven Development

Write the test of a function before you write the function.

A test will clarify the domain, range, & behavior of a function.

Tests can help identify tricky edge cases.

!10

Test-Driven Development

Write the test of a function before you write the function.

A test will clarify the domain, range, & behavior of a function.

Tests can help identify tricky edge cases.

Develop incrementally and test each piece before moving on.

!10

Test-Driven Development

Write the test of a function before you write the function.

A test will clarify the domain, range, & behavior of a function.

Tests can help identify tricky edge cases.

Develop incrementally and test each piece before moving on.

You can't depend upon code that hasn't been tested.

!10

Test-Driven Development

Write the test of a function before you write the function.

A test will clarify the domain, range, & behavior of a function.

Tests can help identify tricky edge cases.

Develop incrementally and test each piece before moving on.

You can't depend upon code that hasn't been tested.

Run your old tests again after you make new changes.

!10

Test-Driven Development

Write the test of a function before you write the function.

A test will clarify the domain, range, & behavior of a function.

Tests can help identify tricky edge cases.

Develop incrementally and test each piece before moving on.

You can't depend upon code that hasn't been tested.

Run your old tests again after you make new changes.

!10

Bonus idea: Run your code interactively.

Test-Driven Development

Write the test of a function before you write the function.

A test will clarify the domain, range, & behavior of a function.

Tests can help identify tricky edge cases.

Develop incrementally and test each piece before moving on.

You can't depend upon code that hasn't been tested.

Run your old tests again after you make new changes.

!10

Bonus idea: Run your code interactively.

Don't be afraid to experiment with a function after you write it.

Test-Driven Development

Write the test of a function before you write the function.

A test will clarify the domain, range, & behavior of a function.

Tests can help identify tricky edge cases.

Develop incrementally and test each piece before moving on.

You can't depend upon code that hasn't been tested.

Run your old tests again after you make new changes.

!10

Bonus idea: Run your code interactively.

Don't be afraid to experiment with a function after you write it.

Interactive sessions can become doctests. Just copy and paste.

Test-Driven Development

Write the test of a function before you write the function.

A test will clarify the domain, range, & behavior of a function.

Tests can help identify tricky edge cases.

Develop incrementally and test each piece before moving on.

You can't depend upon code that hasn't been tested.

Run your old tests again after you make new changes.

!10

Bonus idea: Run your code interactively.

Don't be afraid to experiment with a function after you write it.

Interactive sessions can become doctests. Just copy and paste. (Demo)

Currying

Function Currying

!12

Function Currying

def make_adder(n):
 return lambda k: n + k

!12

Function Currying

def make_adder(n):
 return lambda k: n + k

>>> make_adder(2)(3)
5
>>> add(2, 3)
5

!12

Function Currying

def make_adder(n):
 return lambda k: n + k

>>> make_adder(2)(3)
5
>>> add(2, 3)
5

There's a general
relationship between

these functions

!12

Function Currying

def make_adder(n):
 return lambda k: n + k

>>> make_adder(2)(3)
5
>>> add(2, 3)
5

There's a general
relationship between

these functions

!12

(Demo)

Function Currying

def make_adder(n):
 return lambda k: n + k

>>> make_adder(2)(3)
5
>>> add(2, 3)
5

There's a general
relationship between

these functions

Curry: Transform a multi-argument function into a single-argument, higher-order function

!12

(Demo)

Decorators

Function Decorators

(Demo)

!14

Function Decorators

(Demo)

@trace1
def triple(x):
 return 3 * x

!14

Function Decorators

(Demo)

@trace1
def triple(x):
 return 3 * x

Function
decorator

!14

Function Decorators

(Demo)

@trace1
def triple(x):
 return 3 * x

Decorated
function

Function
decorator

!14

Function Decorators

(Demo)

@trace1
def triple(x):
 return 3 * x

is identical to

Decorated
function

Function
decorator

!14

Function Decorators

(Demo)

@trace1
def triple(x):
 return 3 * x

is identical to

def triple(x):
 return 3 * x
triple = trace1(triple)

Decorated
function

Function
decorator

!14

Function Decorators

(Demo)

@trace1
def triple(x):
 return 3 * x

is identical to

def triple(x):
 return 3 * x
triple = trace1(triple)

Decorated
function

Why not just
use this?

Function
decorator

!14

Review

What Would Python Display?

!16

What Would Python Display?

The print function returns None. It also displays its arguments
(separated by spaces) when it is called.

!16

What Would Python Display?

The print function returns None. It also displays its arguments
(separated by spaces) when it is called.

from operator import add, mul
def square(x):
 return mul(x, x)

!16

What Would Python Display?

The print function returns None. It also displays its arguments
(separated by spaces) when it is called.

from operator import add, mul
def square(x):
 return mul(x, x)

!16

This expression Evaluates to
Interactive
Output

What Would Python Display?

The print function returns None. It also displays its arguments
(separated by spaces) when it is called.

from operator import add, mul
def square(x):
 return mul(x, x)

!16

5 5

This expression Evaluates to
Interactive
Output

What Would Python Display?

The print function returns None. It also displays its arguments
(separated by spaces) when it is called.

from operator import add, mul
def square(x):
 return mul(x, x)

!16

5 5

This expression Evaluates to
Interactive
Output

5

What Would Python Display?

The print function returns None. It also displays its arguments
(separated by spaces) when it is called.

from operator import add, mul
def square(x):
 return mul(x, x)

!16

print(5)

5 5

This expression Evaluates to
Interactive
Output

5

What Would Python Display?

The print function returns None. It also displays its arguments
(separated by spaces) when it is called.

from operator import add, mul
def square(x):
 return mul(x, x)

!16

print(5)

5 5

None

This expression Evaluates to
Interactive
Output

5

What Would Python Display?

The print function returns None. It also displays its arguments
(separated by spaces) when it is called.

from operator import add, mul
def square(x):
 return mul(x, x)

!16

print(5)

5 5

None 5

This expression Evaluates to
Interactive
Output

5

What Would Python Display?

The print function returns None. It also displays its arguments
(separated by spaces) when it is called.

from operator import add, mul
def square(x):
 return mul(x, x)

print(print(5))

!16

print(5)

5 5

None 5

This expression Evaluates to
Interactive
Output

5

What Would Python Display?

The print function returns None. It also displays its arguments
(separated by spaces) when it is called.

from operator import add, mul
def square(x):
 return mul(x, x)

print(print(5))
None

!16

print(5)

5 5

None 5

This expression Evaluates to
Interactive
Output

5

What Would Python Display?

The print function returns None. It also displays its arguments
(separated by spaces) when it is called.

from operator import add, mul
def square(x):
 return mul(x, x)

print(print(5))
None

!16

print(5)

5 5

None

5
None

5

This expression Evaluates to
Interactive
Output

5

What Would Python Display?

The print function returns None. It also displays its arguments
(separated by spaces) when it is called.

from operator import add, mul
def square(x):
 return mul(x, x)

print(print(5))
None

!16

print(5)

None

5 5

None

5
None

5

This expression Evaluates to
Interactive
Output

5

def delay(arg):
 print('delayed')
 def g():
 return arg
 return g

What Would Python Display?

The print function returns None. It also displays its arguments
(separated by spaces) when it is called.

from operator import add, mul
def square(x):
 return mul(x, x)

print(print(5))
None

!16

print(5)

None

5 5

None

5
None

5

This expression Evaluates to
Interactive
Output

5

def delay(arg):
 print('delayed')
 def g():
 return arg
 return g

What Would Python Display?

The print function returns None. It also displays its arguments
(separated by spaces) when it is called.

from operator import add, mul
def square(x):
 return mul(x, x)

print(print(5))

delay(delay)()(6)()

None

!16

print(5)

None

5 5

None

5
None

5

This expression Evaluates to
Interactive
Output

5

def delay(arg):
 print('delayed')
 def g():
 return arg
 return g

What Would Python Display?

The print function returns None. It also displays its arguments
(separated by spaces) when it is called.

from operator import add, mul
def square(x):
 return mul(x, x)

Names in nested def
statements can refer to
their enclosing scope

print(print(5))

delay(delay)()(6)()

None

!16

print(5)

None

5 5

None

5
None

5

This expression Evaluates to
Interactive
Output

5

def delay(arg):
 print('delayed')
 def g():
 return arg
 return g

What Would Python Display?

The print function returns None. It also displays its arguments
(separated by spaces) when it is called.

from operator import add, mul
def square(x):
 return mul(x, x)

Names in nested def
statements can refer to
their enclosing scope

A function that takes any
argument and returns a
function that returns

that arg print(print(5))

delay(delay)()(6)()

None

!16

print(5)

None

5 5

None

5
None

5

This expression Evaluates to
Interactive
Output

5

def delay(arg):
 print('delayed')
 def g():
 return arg
 return g

What Would Python Display?

The print function returns None. It also displays its arguments
(separated by spaces) when it is called.

from operator import add, mul
def square(x):
 return mul(x, x)

Names in nested def
statements can refer to
their enclosing scope

A function that takes any
argument and returns a
function that returns

that arg print(print(5))

delay(delay)()(6)()

None

!16

print(5)

None

5 5

None

5
None

5

This expression Evaluates to
Interactive
Output

5

def delay(arg):
 print('delayed')
 def g():
 return arg
 return g

What Would Python Display?

The print function returns None. It also displays its arguments
(separated by spaces) when it is called.

from operator import add, mul
def square(x):
 return mul(x, x)

Names in nested def
statements can refer to
their enclosing scope

A function that takes any
argument and returns a
function that returns

that arg print(print(5))

delay(delay)()(6)()

None

!16

print(5)

None

5 5

None

5
None

5

This expression Evaluates to
Interactive
Output

5

def delay(arg):
 print('delayed')
 def g():
 return arg
 return g

What Would Python Display?

The print function returns None. It also displays its arguments
(separated by spaces) when it is called.

from operator import add, mul
def square(x):
 return mul(x, x)

Names in nested def
statements can refer to
their enclosing scope

A function that takes any
argument and returns a
function that returns

that arg print(print(5))

delay(delay)()(6)()

None

!16

print(5)

None

5 5

None

5
None

5

This expression Evaluates to
Interactive
Output

5

def delay(arg):
 print('delayed')
 def g():
 return arg
 return g

What Would Python Display?

The print function returns None. It also displays its arguments
(separated by spaces) when it is called.

from operator import add, mul
def square(x):
 return mul(x, x)

Names in nested def
statements can refer to
their enclosing scope

A function that takes any
argument and returns a
function that returns

that arg print(print(5))

delay(delay)()(6)()

None

!16

print(5)

None

5 5

None

5
None

5

This expression Evaluates to
Interactive
Output

5

def delay(arg):
 print('delayed')
 def g():
 return arg
 return g

What Would Python Display?

The print function returns None. It also displays its arguments
(separated by spaces) when it is called.

from operator import add, mul
def square(x):
 return mul(x, x)

Names in nested def
statements can refer to
their enclosing scope

A function that takes any
argument and returns a
function that returns

that arg print(print(5))

delay(delay)()(6)()

None

!16

print(5)

None

5 5

None

5
None

delayed

5

This expression Evaluates to
Interactive
Output

5

def delay(arg):
 print('delayed')
 def g():
 return arg
 return g

What Would Python Display?

The print function returns None. It also displays its arguments
(separated by spaces) when it is called.

from operator import add, mul
def square(x):
 return mul(x, x)

Names in nested def
statements can refer to
their enclosing scope

A function that takes any
argument and returns a
function that returns

that arg print(print(5))

delay(delay)()(6)()

None

!16

print(5)

None

5 5

None

5
None

delayed
delayed

5

This expression Evaluates to
Interactive
Output

5

def delay(arg):
 print('delayed')
 def g():
 return arg
 return g

What Would Python Display?

The print function returns None. It also displays its arguments
(separated by spaces) when it is called.

from operator import add, mul
def square(x):
 return mul(x, x)

Names in nested def
statements can refer to
their enclosing scope

A function that takes any
argument and returns a
function that returns

that arg print(print(5))

delay(delay)()(6)()

None

!16

print(5)

None

5 5

None

5
None

delayed
delayed
6

5

This expression Evaluates to
Interactive
Output

5

def delay(arg):
 print('delayed')
 def g():
 return arg
 return g

What Would Python Display?

The print function returns None. It also displays its arguments
(separated by spaces) when it is called.

from operator import add, mul
def square(x):
 return mul(x, x)

Names in nested def
statements can refer to
their enclosing scope

A function that takes any
argument and returns a
function that returns

that arg print(print(5))

delay(delay)()(6)()

None

!16

print(5)

None

6

5 5

None

5
None

delayed
delayed
6

5

This expression Evaluates to
Interactive
Output

5

def delay(arg):
 print('delayed')
 def g():
 return arg
 return g

What Would Python Display?

The print function returns None. It also displays its arguments
(separated by spaces) when it is called.

from operator import add, mul
def square(x):
 return mul(x, x)

Names in nested def
statements can refer to
their enclosing scope

A function that takes any
argument and returns a
function that returns

that arg print(print(5))

delay(delay)()(6)()

print(delay(print)()(4))

None

!16

print(5)

None

6

5 5

None

5
None

delayed
delayed
6

5

This expression Evaluates to
Interactive
Output

5

def delay(arg):
 print('delayed')
 def g():
 return arg
 return g

What Would Python Display?

The print function returns None. It also displays its arguments
(separated by spaces) when it is called.

from operator import add, mul
def square(x):
 return mul(x, x)

Names in nested def
statements can refer to
their enclosing scope

A function that takes any
argument and returns a
function that returns

that arg print(print(5))

delay(delay)()(6)()

print(delay(print)()(4))

None

!16

print(5)

None

6

5 5

None

5
None

delayed
delayed
6

delayed

5

This expression Evaluates to
Interactive
Output

5

def delay(arg):
 print('delayed')
 def g():
 return arg
 return g

What Would Python Display?

The print function returns None. It also displays its arguments
(separated by spaces) when it is called.

from operator import add, mul
def square(x):
 return mul(x, x)

Names in nested def
statements can refer to
their enclosing scope

A function that takes any
argument and returns a
function that returns

that arg print(print(5))

delay(delay)()(6)()

print(delay(print)()(4))

None

!16

print(5)

None

6

5 5

None

5
None

delayed
delayed
6

delayed
4

5

This expression Evaluates to
Interactive
Output

5

def delay(arg):
 print('delayed')
 def g():
 return arg
 return g

What Would Python Display?

The print function returns None. It also displays its arguments
(separated by spaces) when it is called.

from operator import add, mul
def square(x):
 return mul(x, x)

Names in nested def
statements can refer to
their enclosing scope

A function that takes any
argument and returns a
function that returns

that arg print(print(5))

delay(delay)()(6)()

print(delay(print)()(4))

None

!16

print(5)

None

6

5 5

None

5
None

delayed
delayed
6

delayed
4
None

5

This expression Evaluates to
Interactive
Output

5

def delay(arg):
 print('delayed')
 def g():
 return arg
 return g

What Would Python Display?

The print function returns None. It also displays its arguments
(separated by spaces) when it is called.

from operator import add, mul
def square(x):
 return mul(x, x)

Names in nested def
statements can refer to
their enclosing scope

A function that takes any
argument and returns a
function that returns

that arg print(print(5))

delay(delay)()(6)()

print(delay(print)()(4))

None

!16

print(5)

None

6

None

5 5

None

5
None

delayed
delayed
6

delayed
4
None

5

This expression Evaluates to
Interactive
Output

5

Global frame
horse

mask

func horse(mask) [parent=Global]

func λ(horse) [parent=Global]

def horse(mask):
 horse = mask
 def mask(horse):
 return horse
 return horse(mask)

mask = lambda horse: horse(2)

horse(mask)

Return Value

Return Value

Return Value

Global frame
horse

mask

func horse(mask) [parent=Global]

func λ(horse) [parent=Global]

def horse(mask):
 horse = mask
 def mask(horse):
 return horse
 return horse(mask)

mask = lambda horse: horse(2)

horse(mask)

Return Value

Return Value

Return Value

Global frame
horse

mask

func horse(mask) [parent=Global]

func λ(horse) [parent=Global]

def horse(mask):
 horse = mask
 def mask(horse):
 return horse
 return horse(mask)

mask = lambda horse: horse(2)

horse(mask)

Return Value

Return Value

Return Value

 horse [parent=Global]f1:

Global frame
horse

mask

func horse(mask) [parent=Global]

func λ(horse) [parent=Global]

def horse(mask):
 horse = mask
 def mask(horse):
 return horse
 return horse(mask)

mask = lambda horse: horse(2)

horse(mask)

Return Value

Return Value

Return Value

 horse [parent=Global]

mask

f1:

Global frame
horse

mask

func horse(mask) [parent=Global]

func λ(horse) [parent=Global]

def horse(mask):
 horse = mask
 def mask(horse):
 return horse
 return horse(mask)

mask = lambda horse: horse(2)

horse(mask)

Return Value

Return Value

Return Value

 horse [parent=Global]

mask

f1:

Global frame
horse

mask

func horse(mask) [parent=Global]

func λ(horse) [parent=Global]

def horse(mask):
 horse = mask
 def mask(horse):
 return horse
 return horse(mask)

mask = lambda horse: horse(2)

horse(mask)

Return Value

Return Value

Return Value

horse

 horse [parent=Global]

mask

f1:

Global frame
horse

mask

func horse(mask) [parent=Global]

func λ(horse) [parent=Global]

def horse(mask):
 horse = mask
 def mask(horse):
 return horse
 return horse(mask)

mask = lambda horse: horse(2)

horse(mask)

Return Value

Return Value

Return Value

horse

func mask(horse) [parent=f1]

 horse [parent=Global]

mask

f1:

Global frame
horse

mask

func horse(mask) [parent=Global]

func λ(horse) [parent=Global]

def horse(mask):
 horse = mask
 def mask(horse):
 return horse
 return horse(mask)

mask = lambda horse: horse(2)

horse(mask)

Return Value

Return Value

Return Value

horse

func mask(horse) [parent=f1]

 horse [parent=Global]

mask

f1:

Global frame
horse

mask

func horse(mask) [parent=Global]

func λ(horse) [parent=Global]

def horse(mask):
 horse = mask
 def mask(horse):
 return horse
 return horse(mask)

mask = lambda horse: horse(2)

horse(mask)

Return Value

Return Value

Return Value

horse

func mask(horse) [parent=f1]

 horse [parent=Global]

mask

f1:

Global frame
horse

mask

func horse(mask) [parent=Global]

func λ(horse) [parent=Global]

def horse(mask):
 horse = mask
 def mask(horse):
 return horse
 return horse(mask)

mask = lambda horse: horse(2)

horse(mask)

Return Value

Return Value

Return Value

horse

func mask(horse) [parent=f1]

 horse [parent=Global]

mask

f1:

Global frame
horse

mask

func horse(mask) [parent=Global]

func λ(horse) [parent=Global]

def horse(mask):
 horse = mask
 def mask(horse):
 return horse
 return horse(mask)

mask = lambda horse: horse(2)

horse(mask)

Return Value

Return Value

Return Value

horse

func mask(horse) [parent=f1]

 horse [parent=Global]

mask

f1:

Global frame
horse

mask

func horse(mask) [parent=Global]

func λ(horse) [parent=Global]

def horse(mask):
 horse = mask
 def mask(horse):
 return horse
 return horse(mask)

mask = lambda horse: horse(2)

horse(mask)

Return Value

Return Value

Return Value

horse

func mask(horse) [parent=f1]

 horse [parent=Global]

mask

f1:

Global frame
horse

mask

func horse(mask) [parent=Global]

func λ(horse) [parent=Global]

def horse(mask):
 horse = mask
 def mask(horse):
 return horse
 return horse(mask)

mask = lambda horse: horse(2)

horse(mask)

Return Value

Return Value

Return Value

horse

func mask(horse) [parent=f1]

 horse [parent=Global]

mask

f1:

Global frame
horse

mask

func horse(mask) [parent=Global]

func λ(horse) [parent=Global]

def horse(mask):
 horse = mask
 def mask(horse):
 return horse
 return horse(mask)

mask = lambda horse: horse(2)

horse(mask)

Return Value

Return Value

Return Value

horse

func mask(horse) [parent=f1]f2: λ [parent=Global]

 horse [parent=Global]

mask

f1:

Global frame
horse

mask

func horse(mask) [parent=Global]

func λ(horse) [parent=Global]

def horse(mask):
 horse = mask
 def mask(horse):
 return horse
 return horse(mask)

mask = lambda horse: horse(2)

horse(mask)

Return Value

Return Value

Return Value

horse

func mask(horse) [parent=f1]f2: λ [parent=Global]

horse

 horse [parent=Global]

mask

f1:

Global frame
horse

mask

func horse(mask) [parent=Global]

func λ(horse) [parent=Global]

def horse(mask):
 horse = mask
 def mask(horse):
 return horse
 return horse(mask)

mask = lambda horse: horse(2)

horse(mask)

Return Value

Return Value

Return Value

horse

func mask(horse) [parent=f1]f2: λ [parent=Global]

horse

 horse [parent=Global]

mask

f1:

 f3: mask [parent=f1]

Global frame
horse

mask

func horse(mask) [parent=Global]

func λ(horse) [parent=Global]

def horse(mask):
 horse = mask
 def mask(horse):
 return horse
 return horse(mask)

mask = lambda horse: horse(2)

horse(mask)

Return Value

Return Value

Return Value

horse

func mask(horse) [parent=f1]f2: λ [parent=Global]

horse

horse 2

 horse [parent=Global]

mask

f1:

 f3: mask [parent=f1]

Global frame
horse

mask

func horse(mask) [parent=Global]

func λ(horse) [parent=Global]

def horse(mask):
 horse = mask
 def mask(horse):
 return horse
 return horse(mask)

mask = lambda horse: horse(2)

horse(mask)

Return Value

Return Value

Return Value

horse

func mask(horse) [parent=f1]f2: λ [parent=Global]

horse

horse 2

2

 horse [parent=Global]

mask

f1:

 f3: mask [parent=f1]

Global frame
horse

mask

func horse(mask) [parent=Global]

func λ(horse) [parent=Global]

def horse(mask):
 horse = mask
 def mask(horse):
 return horse
 return horse(mask)

mask = lambda horse: horse(2)

horse(mask)

Return Value

Return Value

Return Value

horse

func mask(horse) [parent=f1]f2: λ [parent=Global]

horse

horse 2

2

2

 horse [parent=Global]

mask

f1:

 f3: mask [parent=f1]

Global frame
horse

mask

func horse(mask) [parent=Global]

func λ(horse) [parent=Global]

def horse(mask):
 horse = mask
 def mask(horse):
 return horse
 return horse(mask)

mask = lambda horse: horse(2)

horse(mask)

Return Value

Return Value

Return Value

horse

func mask(horse) [parent=f1]

2

f2: λ [parent=Global]

horse

horse 2

2

2

 horse [parent=Global]

mask

f1:

 f3: mask [parent=f1]

