Tree Recursion



Announcements



Order of Recursive Calls



The Cascade Function

(Demo)
def cascade(n): Global frame func cascade(n) [parent=Global]
if n < 10: cascade
print(n)
else: fl: cascade [parent=Global]
print(n) n 123
cascade(n//10)
print(n) . _ )
- ,412: cascade [parent=Global] -Each cascade frame is from a
' n 12 i t .
cascade (123) : different call to cascade
; "M Nome  -Until the Return value appears,
N that call has not completed.
Program output: s
123 y==morr - l.a=f3: cascade [parent=Global] Any statement can appear before
g or after the recursive call.
12«-=-="""~ v n 1
B 4
e mmmm === Return
1l « "' value None
12«<====-"-"~

Interactive Diagram



Two Definitions of Cascade

(Demo)
def cascade(n): def cascade(n):

if n < 10: print(n)
print(n) if n >= 10:

else: cascade(n//10)
print(n) print(n)
cascade(n//10)
print(n)

- If two implementations are equally clear, then shorter is usually better
- In this case, the longer implementation is more clear (at least to me)
- When learning to write recursive functions, put the base cases first

- Both are recursive functions, even though only the first has typical structure



Example: Inverse Cascade



Inverse Cascade

Write a function that

1

12
123
1234
123
12

1

prints an inverse cascade:

def inverse_cascade(n):
grow(n)
print(n)
shrink(n)

def f_then_g(f, g, n):
if n:
f(n)
g(n)

grow = lambda n: f_then_g(
shrink = lambda n: f_then_g(



Tree Recursion



Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more
than one recursive call

n: 0,1, 2, 3, 45,6, 7, 8, ae 35

fib(n): o, 1, 1, 2, 3, 5, 8, 13, 21, can 9,227,465

def fib(n):
if n ==
return O
elif n ==
return 1

else:
return fib(n-2) + fib(n-1)




A Tree-Recursive Process

3)

fib(4)

T fib(5)

The computational process of fib evolves into a tree structure

S fib(
-
(1)

(Demo)



Repetition in Tree-Recursive Computation

This process is highly repetitive; fib is called on the same argument multiple times

fib(5)
fib(3) fib(4)
/ AN
fib(1) fib(2)
‘ // \\\ fib(2) fib(3)
1  fib(0) fib(1) P4 . s .
‘ ‘ fib(0) fib(1) fib(1) fib(2)
’ ' | | Y N
0 1 1 fib(e)  fib(1)

(We will speed up this computation dramatically in a few weeks by remembering results)



Example: Counting Partitions



Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

count_partitions(6, 4)

2+4=6 - e o0 e
1+1+4=6 o 6 [ X X X ]
3+3=6 oo e oo e
1+2+3=6 o oo [ X X )
1+1+1+3=26 .I' 1'.. .I. ‘I"ll'.l'
2 +2+2=6 [ X ) [ X ) [ X )
1+1+2+2-= o 6 [ X ) [ X )
1+1+1+1+2=6 o e o o [ X ]
1+1+1+1+1+1=6 ‘I'i ‘I'i 1‘.' ‘I'i 1‘.' ‘I'



Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

count_partitions(6, 4)

*Recursive decomposition: finding

simpler instances of the problem. '__.é
-Explore two possibilities: "'
-Use at least one 4 ','

-Don't use any 4 /l

-Solve two simpler problems: "'
ccount_partitions(2, 4) -~~~
ccount_partitions(6, 3) =============="

*Tree recursion often involves
exploring different choices.




Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, 1is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in

increasing order.

Recursive decomposition: finding
simpler instances of the problem.

Explore two possibilities:
Use at least one 4

Don't use any 4

Solve two simpler problems:
count_partitions(2, 4)
count_partitions(6, 3)

Tree recursion often involves
exploring different choices.

def count_partitions(n, m):
if n ==
return 1
elif n < 0:
return 0
elif m ==
return 0

else:
with m = count partitions(n-m, m)
without m = count partitions(n, m-1)
return with m + without m

(Demo)

Interactive Diagram



