
Tree Recursion

Announcements

Order of Recursive Calls

The Cascade Function

•Each cascade frame is from a
different call to cascade.

•Until the Return value appears,
that call has not completed.

•Any statement can appear before
or after the recursive call.

(Demo)

4Interactive Diagram

Two Definitions of Cascade

5

def cascade(n):
 if n < 10:
 print(n)
 else:
 print(n)
 cascade(n//10)
 print(n)

def cascade(n):
 print(n)
 if n >= 10:
 cascade(n//10)
 print(n)

(Demo)

• If two implementations are equally clear, then shorter is usually better

• In this case, the longer implementation is more clear (at least to me)

• When learning to write recursive functions, put the base cases first

• Both are recursive functions, even though only the first has typical structure

Example: Inverse Cascade

1  
12  
123 
1234 
123 
12  
1

Inverse Cascade

Write a function that prints an inverse cascade:

7

grow = lambda n: f_then_g(grow, print, n//10)
shrink = lambda n: f_then_g(print, shrink, n//10)

def f_then_g(f, g, n):
 if n:
 f(n)
 g(n)

1  
12  
123 
1234 
123 
12  
1

def inverse_cascade(n):
 grow(n)
 print(n)
 shrink(n)

Tree Recursion

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

0, 1, 2, 3, 4, 5, 6, 7, 8,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 9,227,465

 ... , 35

def fib(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:
 return fib(n-2) + fib(n-1)

Tree-shaped processes arise whenever executing the body of a recursive function makes more
than one recursive call

9

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

10

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

(Demo)

Repetition in Tree-Recursive Computation

fib(5)

fib(3)

fib(1)

1

fib(4)

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

This process is highly repetitive; fib is called on the same argument multiple times

11

(We will speed up this computation dramatically in a few weeks by remembering results)

Example: Counting Partitions

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

13

count_partitions(6, 4)

3 + 3 = 6

1 + 1 + 2 + 2 = 6

2 + 4 = 6

1 + 1 + 4 = 6

1 + 2 + 3 = 6
1 + 1 + 1 + 3 = 6
2 + 2 + 2 = 6

1 + 1 + 1 + 1 + 2 = 6
1 + 1 + 1 + 1 + 1 + 1 = 6

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

14

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

•Use at least one 4

•Don't use any 4

• Solve two simpler problems:

•count_partitions(2, 4)

•count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

15

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

•Use at least one 4

•Don't use any 4

• Solve two simpler problems:

•count_partitions(2, 4)

•count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):
 if n == 0:
 return 1
 elif n < 0:
 return 0
 elif m == 0:
 return 0

 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

(Demo)

Interactive Diagram

