| Declarative Programming |
| :--- | :--- |
| |
| |
| |
| |

Announcements

\square

Database Management Systems

Database management systems (DBMS) are important, heavily used, and interesting!
A table is a collection of records, which are rows that have a value for each column

The Structured Query Language (SQL) is perhaps the most widely used programming language
SQL is a declarative programming language

Declarative Programming

In declarative languages such as SQL \& Prolog:
A "program" is a description of the desired result The interpreter figures out how to generate the result

In imperative languages such as Python \& Scheme:
A "program" is a description of computational processes The interpreter carries out execution/evaluation rules
create table cities as
select 38 as latitude, 122 as longitude, "Berkeley" as name union select 42, 71 select 45,
select "west coast" as region, name from cities where longitude $>=115$ union
select "other", name from cities where longitude < 115;

SQL Overview

The SQL language is an ANSI and ISO standard, but DBMS's implement custom variants
A select statement creates a new table, either from scratch or by projecting a table
A create table statement gives a global name to a table
Lots of other statements exist: analyze, delete, explain, insert, replace, update, etc. Most of the important action is in the select statement

Getting Started with SQL

Install sqlite (version 3.8.3 or later): http://sqlite.org/download.html Use sqlite online: http://kripken.github.io/sql.js/GUI/

Selecting Value Literals

A select statement always includes a comma-separated list of column descriptions
A column description is an expression, optionally followed by as and a column name select [expression] as [name], [expression] as [name]; ...
Selecting literals creates a one-row table
The union of two select statements is a table
containing the rows of both of their results
select "delano" as parent, "herbert" as child;union select "abraham" select "abraham" select "fillmore" select "fillor select "fillmore" select "eisenhowe , "barack"
, "clinton"
, "abraham"
, "delano"
, "grover"
, "fillmore"; union union union union

Naming Tables

SQL is often used as an interactive language
The result of a select statement is displayed to the user, but not stored A create table statement gives the result a name
create table [name] as [select statement];
create table parents as
select "delano" as parent, "herbert" as child union select "abraham" , "barack" union select "abraham" , "clinton" union select "fillmore" , "abraham" union select "fillmore" , "delano" union select "fillmore" , "grover" union select "eisenhower" , "fillmore";

Parents:

Parent	Child
abraham	barack
abraham	clinton
delano	herbert
fillmore	abraham
fillmore	delano
fillmore	grover
eisenhower	fillmore

Projecting Tables
\square

Arithmetic

Discussion Question

Given the table ints that describes how to sum powers of 2 to form various integers

(A) Write a select statement for a two-column table of the word and value for each integer

word	value
zero	0
one	1
two	2
three	3
$\boldsymbol{\cdots}$	\cdots

(Demo

(B) Write a select statement for the word names of the powers of two

word
one
two
four
eight

-

Arithmetic in Select Expressions

In a select expression, column names evaluate to row values Arithmetic expressions can combine row values and constants
create table lift as
 $\begin{array}{lll}\text { select } & 102 & , 0 \\ \text { select } & 103 & , 4\end{array}$
select chair, single +2 * couple as total from lift;

chair	total
101	6
102	6
103	6

Select Statements Project Existing Tables
A select statement can specify an input table using a from clause
A subset of the rows of the input table can be selected using a where clause
An ordering over the remaining rows can be declared using an order by clause Column descriptions determine how each input row is projected to a result row select [expression] as [name], [expression] as [name], \cdots; ; select [columns] from [table] where [condition] order by [order]; select child from parents where parent = "abraham"; select parent from parents where parent > child;

Child
barack
clinton

Parent
fillmore
fillmore

(Demo)

