## 61A Extra Lecture 1

## Announcements

- If you want 1 unit (pass/no pass) of credit for in CS 98-52, the CCN is 34591.
-Only for people who really want extra work that's beyond the scope of normal CS 61A.
- Anyone is welcome to attend the extra lectures, whether or not they enroll.
-All info and materials will be posted to cs61a.org/extra.html

Newton's Method

## Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!


Application: a method for computing square roots, cube roots, etc.
The positive zero of $f(x)=x^{2}-a$ is $\sqrt{a}$. (We're solving the equation $x^{2}=a$.)

## Newton's Method

Given a function $f$ and initial guess $x$,

Repeatedly improve x:
Compute the value of $f$ at the guess: $f(x)$

Compute the derivative of $f$ at the guess: $\mathrm{f}^{\prime}(\mathrm{x})$

Update guess $x$ to be:

$$
x-\frac{f(x)}{f^{\prime}(x)}
$$

Finish when $f(x)=0$ (or close enough)


## Using Newton's Method

How to find the square root of 2 ?


How to find the cube root of 729 ?


Iterative Improvement

## Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess $x$ about the square root of a

$$
\begin{equation*}
\text { Update: } \quad X=\frac{x+\frac{a}{x}}{2} \tag{Demo}
\end{equation*}
$$

Babylonian Method

## Implementation questions:

What guess should start the computation?
How do we know when we are finished?

## Special Case: Cube Roots

How to compute cube_root(a)
Idea: Iteratively refine a guess $x$ about the cube root of a

$$
\begin{equation*}
\text { Update: } \quad X=\frac{2 \cdot x+\frac{a}{x^{2}}}{3} \tag{Demo}
\end{equation*}
$$

## Implementation questions:

What guess should start the computation?
How do we know when we are finished?

# Implementing Newton's Method 

## Extensions

## Approximate Differentiation

Differentiation can be performed symbolically or numerically

$$
\begin{aligned}
& f(x)=x^{2}-16 \\
& f^{\prime}(x)=2 x \\
& f^{\prime}(2)=4
\end{aligned}
$$

$$
f^{\prime}(x)=\lim _{a \rightarrow 0} \frac{f(x+a)-f(x)}{a}
$$

$$
f^{\prime}(x) \approx \frac{f(x+a)-f(x)}{a} \quad(\text { if } a \text { is small })
$$



## Critical Points and Inverses

Maxima, minima, and inflection points of a differentiable function occur when the derivative is 0

```
(Demo)
```

The inverse $\mathrm{f}^{-1}(\mathrm{y})$ of a differentiable, one-to-one function computes the value $x$ such that $f(x)=y$


