
CS 61A/CS 98-52

Mehrdad Niknami

University of California, Berkeley

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 1 / 25

Warning

FYI: This lecture might get a little... intense... and math-y

If it’s hard, don’t panic! It’s okpy! They won’t all be like this!

Just try to enjoy it, ask questions, & learn as much as you can. :)

Ready?!

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 2 / 25

Preliminaries

Last lecture was on equation-solving:

“Given f and initial guess x0, solve f (x) = 0”

This lecture is on optimization: arg minx F (x)

“Given F and initial guess x0, find x that minimizes F (x)”

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 3 / 25

Brachistochrone Problem

Let’s solve a realistic problem.

It’s the brachistochrone (“shortest time”) problem:

1 Drop a ball on a ramp

2 Let it roll down

3 What shape minimizes the travel time?

0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

=⇒ How would you solve this?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 4 / 25

Brachistochrone Problem

Ideally: Learn fancy math, derive the answer, plug in the formula.

Oh, sorry... did you say you’re a programmer?

1 Math is hard

2 Physics is hard

3 We’re lazy

4 Why learn something new when you can burn electricity instead?

OK but honestly the math is a little complicated...

Calculus of variations... Euler-Lagrange differential eqn... maybe?

Take Physics 105... have fun!

Don’t get wrecked

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 5 / 25

Brachistochrone Problem

Joking aside...

Most problems don’t have a nice formula, so you’ll need algorithms.

Let’s get our hands dirty!
Remember Riemann sums?

This is similar:

1 Chop up the ramp into line
segments (but hold ends fixed)

2 Move around the anchors to
minimize travel time

Q: How do you do this?
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 6 / 25

Algorithm

Use Newton-Raphson!

...but wasn’t that for finding roots? Not optimizing?

Actually, it’s used for both:

If F is differentiable, minimizing F reduces to root-finding:

F ′(x) = f (x) = 0

Caveat: must avoid maxima and inflection points

Easy in 1-D: only ± directions to check for increase/decrease

Good luck in N-D... infinitely many directions

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 7 / 25

Algorithm

Newton-Raphson method for optimization:

1 Assume F is approximately quadratic1 (so f = F ′ approx. linear)

2 Guess some x0 intelligently

3 Repeatedly solve linear approximation2 of f = F ′:

f (xk)− f (xk+1) = f ′(xk) (xk − xk+1)

f (xk+1) = 0

=⇒ xk+1 = xk − f ′(xk)−1 f (xk)

We ignored F ! Avoid maxima and inflection points! (How?)

4 ...Profit?

1Why are quadratics common? Energy/cost are quadratic (K = 1
2
mv 2, P = I 2R...)

2You’ll see linearization ALL the time in engineering

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 8 / 25

http://mathworld.wolfram.com/BrachistochroneProblem.html

Algorithm

Wait, but we have a function of many variables. What do?

A couple options:

1 Fully multivariate Newton-Raphson:

~xk+1 = ~xk − ~∇~f (~xk)−1~f (~xk)

Taught in EE 219A, 227C, 144/244, etc... (need Math 53 and 54)

2 Newton coordinate-descent

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 9 / 25

Algorithm

Coordinate descent:

1 Take x1, use it to minimize F , holding others fixed

2 Take y1, use it to minimize F , holding others fixed

3 Take x2, use it to minimize F , holding others fixed

4 Take y2, use it to minimize F , holding others fixed

5 . . .

6 Cycle through again

Doesn’t work as often, but it works very well here.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 10 / 25

Algorithm

Newton step for minimization:

def newton_minimizer_step(F, coords, h):

delta = 0.0

for i in range(1, len(coords) - 1):

for j in range(len(coords[i])):

def f(c): return derivative(F, c, i, j, h)

def df(c): return derivative(f, c, i, j, h)

step = -f(coords) / df(coords)

delta += abs(step)

coords[i][j] += step

return delta

Side note: Notice a potential bug? What’s the fix?
Notice a 33% inefficiency? What’s the fix?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 11 / 25

Algorithm

Computing derivatives numerically:

def derivative(f, coords, i, j, h):

x = coords[i][j]

coords[i][j] = x + h; f2 = f(coords)

coords[i][j] = x - h; f1 = f(coords)

coords[i][j] = x

return (f2 - f1) / (2 * h)

Why not (f(x + h) - f(x)) / h?

Breaking the intrinsic asymmetry reduces accuracy

∼ Words of Wisdom ∼

If your problem has {fundamental feature} that your solution doesn’t,
you’ve created more problems.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 12 / 25

Algorithm

What is our objective function F to minimize?

def falling_time(coords): # coords = [[x1,y1], [x2,y2], ...]

t, speed = 0.0, 0.0

prev = None

for coord in coords:

if prev != None:

dy = coord[1] - prev[1]

d = ((coord[0] - prev[0]) ** 2 + dy ** 2) ** 0.5

accel = -9.80665 * dy / d

for dt in quadratic_roots(accel, speed, -d):

if dt > 0:

speed += accel * dt

t += dt

prev = coord

return t

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 13 / 25

Algorithm

Let’s define quadratic roots...

def quadratic_roots(two_a, b, c):

D = b * b - 2 * two_a * c

if D >= 0:

if D > 0:

r = D ** 0.5

roots = [(-b + r) / two_a, (-b - r) / two_a]

else:

roots = [-b / two_a]

else:

roots = []

return roots

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 14 / 25

Algorithm

Aaaaaand put it all together

def main(n=6):

(y1, y2) = (1.0, 0.0)

(x1, x2) = (0.0, 1.0)

coords = [# initial guess: straight line

[x1 + (x2 - x1) * i / n,

y1 + (y2 - y1) * i / n]

for i in range(n + 1)

]

f = falling_time

h = 0.00001

while newton_minimizer_step(f, coords, h) > 0.01:

print(coords)

if __name__ == '__main__':

main()

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 15 / 25

Algorithm

(Demo)

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 16 / 25

Analysis

Error analysis: If x∞ is the root and εk = xk − x∞ is the error, then:

(xk+1 − x∞) = (xk − x∞)− f (xk)

f ′(xk)
(Newton step)

εk+1 = εk −
f (xk)

f ′(xk)
(error step)

εk+1 = εk −
����f (x∞) + εk f

′(x∞) + 1
2ε

2
k f
′′(x∞) + · · ·

f ′(x∞) + εk f ′′(x∞) + · · ·
(Taylor series)

εk+1 =
1
2ε

2
k f
′′(x∞) + · · ·

f ′(x∞) + εk f ′′(x∞) + · · ·
(simplify)

As εk → 0, the “· · · ” terms are quickly dominated. Therefore:

If f ′(x∞) ≈ 0, then εk+1 ∝ εk (slow: # of correct digits adds)

Otherwise, we have εk+1 ∝ ε2k (fast: # of correct digits doubles)

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 17 / 25

Analysis

Some failure modes:

f is flat near root: too slow

f ′(x) ≈ 0 = shoots off into infinity (n.b. if x != 0 not a solution)

Stable oscillation trap

-0.5 0.5 1.0

-1.5

-1.0

-0.5

Intuition: Think adversarially: create “tricky” f that looks root-less

Obviously this is possible... just put the root far away

Therefore Newton-Raphson can’t be foolproof

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 18 / 25

Final thoughts

Notes: There are subtleties I brushed under the rug:

The physics is much more complicated (why?)

The numerical code can break easily (why?)

Can’t tell why?

What happens if y1 = 0.5 instead of y1 = 1.0?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 19 / 25

Addendum 1

There’s never a one-size-fits-all solution

Must always know something about problem structure

Typical assumptions (stronger assumptions = better results):

Vaguely predictable: Continuity

Somewhat predictable: Differentiability

Pretty predictable: Smoothness (infinite-differentiability)

Extremely predictable: Analyticity (approximable by polynomial)

Function “equals” its infinite Taylor series

Also said to be holomorphic3

3Equivalent to complex-differentiability : f ′(x) = lim
h→0

(
f (x + h)− f (x)

)
/h, h ∈ C.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 20 / 25

Addendum 1

Q: Does knowing f (x1), f ′(x1), f ′′(x1), . . . let you predict f (x2)?

A: Obviously! ...not :) counterexample:

f (x) =

{
e−1/x if x > 0

0 otherwise
-1 1 2 3 4

0.2

0.4

0.6

0.8

Indistinguishable from 0 for x ≤ 0

However, knowing derivatives would be enough for analytic functions!

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 21 / 25

Addendum 2

Fun facts:

Why are polynomials fundamental? Why not, say, exponentials?

Pretty much everything is built on addition & multiplication!

Study of polynomials = study of addition & multiplication

Polynomials are awesome

Polynomials can approximate real-world functions very well

Pretty much everything about polynomials has been solved

Global root bound (Fujiwara4) =⇒ you know where to start

Minimal root separation (Mahler) =⇒ you know when to stop

Guaranteed root-finding (Sturm) =⇒ you can binary-search

4If
∑n

k=0 an−kx
k = 0 then |x | ≤ 2 maxk k

√∣∣ak/an∣∣
Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 22 / 25

Addendum 2

By contrast: Unlike + and ×, exponentiation is not well-understood!

Table-maker’s dilemma (Prof. William Kahan):

Nobody knows cost of computing xy with correct rounding (!)

We don’t even know if it’s possible with finite memory (!!!)

So, polynomials are really nice!

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 23 / 25

Addendum 3

Fun fact: If f is analytic, you can compute f ′ by evaluating f only once!

Any guesses how? Complex-step differentiation!

f (x + ih) ≈ f (x) + i h f ′(x)

Im
(
f (x + ih)

)
≈ h f ′(x) (imaginary parts match)

f ′(x) ≈
Im
(
f (x + ih)

)
h

Features:

More accurate: Avoids “catastrophic cancellation” in subtraction

Faster (sometimes): f evaluated only once

Difficult for ≥ 2nd derivatives (need multicomplex numbers)

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 24 / 25

https://en.wikipedia.org/wiki/Properties_of_polynomial_roots#Other_bounds
https://blogs.mathworks.com/cleve/2013/10/14/complex-step-differentiation/

Done!

Hope you learned something new!

P.S.: Did you prefer the coding part? Or the math part?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 25 / 25

