Warning

FYI: This lecture might get a little... intense... and math-y If it's hard, don't panic! It's okpy! They won't all be like this! Just try to enjoy it, ask questions, & learn as much as you can. :) Ready?!

Preliminaries

Last lecture was on equation-solving:

• "Given f and initial guess x_0 , solve f(x) = 0"

This lecture is on **optimization**: $\arg \min_x F(x)$

• "Given F and initial guess x_0 , find x that minimizes F(x)"

CS 61A/CS 98-52

Mehrdad Niknami

University of California, Berkeley

Brachistochrone Problem

Let's solve a realistic problem.

- It's the brachistochrone ("shortest time") problem:
- Drop a ball on a ramp
- 2 Let it roll down
- What shape minimizes the travel time?

\implies How would **you** solve this?

Brachistochrone Problem

Joking aside...

This is similar:

Brachistochrone Problem

Ideally: Learn fancy math, derive the answer, plug in the formula.

Oh, sorry... did you say you're a programmer?

- Math is hard
- Physics is hard
- We're lazy

• Why learn something new when you can burn electricity instead?

OK but honestly the math is a little complicated...

- Calculus of variations... Euler-Lagrange differential eqn... maybe?
- Take Physics 105... have fun!
- Don't get wrecked

hrdad Niknami (UC B

0.8 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0

Q: How do you do this?

Let's get our hands dirty!

Algorithm

Use Newton-Raphson!

...but wasn't that for finding roots? Not optimizing?

Actually, it's used for both:

• If F is differentiable, minimizing F reduces to root-finding:

$$F'(x)=f(x)=0$$

- Caveat: must avoid maxima and inflection points
 - $\bullet\,$ Easy in 1-D: only \pm directions to check for increase/decrease
 - Good luck in N-D... infinitely many directions

Algorithm

Newton-Raphson method for optimization:

- Assume F is approximately quadratic¹ (so f = F' approx. linear)
- Guess some x₀ intelligently
- **(3)** Repeatedly solve linear approximation² of f = F':

$$f(x_k) - f(x_{k+1}) = f'(x_k) (x_k - x_{k+1})$$

$$f(x_{k+1}) = 0$$

 $\implies \quad x_{k+1} = x_k - f'(x_k)^{-1} f(x_k)$

We ignored F! Avoid maxima and inflection points! (How?)

Output: Contract of the second sec

¹Why are quadratics common? Energy/cost are quadratic ($K = \frac{1}{2}mv^2$, $P = I^2R...$) ²You'll see linearization **ALL** the time in engineering CS 61A/CS 98-52 rdad Niknami (UC E

Algorithm

Wait, but we have a function of **many** variables. What do? A couple options:

Fully multivariate Newton-Raphson:

 $\vec{x}_{k+1} = \vec{x}_k - \vec{\nabla} \vec{f}(\vec{x}_k)^{-1} \vec{f}(\vec{x}_k)$

Taught in EE 219A, 227C, 144/244, etc... (need Math 53 and 54)

Newton coordinate-descent

Coordinate descent:

- Take x1, use it to minimize F, holding others fixed
- Take y₁, use it to minimize F, holding others fixed
- Take x_2 , use it to minimize F, holding others fixed
- Take y_2 , use it to minimize F, holding others fixed
- 5 ...
- Occupie Cycle through again

Doesn't work as often, but it works very well here.

Algorithm

Newton step for minimization:

```
def newton_minimizer_step(F, coords, h):
    delta = 0.0
    for i in range(1, len(coords) - 1):
        for j in range(len(coords[i])):
            def f(c): return derivative(F, c, i, j, h)
            def df(c): return derivative(F, c, i, j, h)
            step = -f(coords) / df(coords)
            delta += abs(step)
            coords[i][j] += step
    return delta
Side note: Notice a potential bug? What's the fix?
            Notice a 33% inefficiency? What's the fix?
```

Algorithm

What is our objective function F to minimize?

def falling_time(coords): # coords = [[x1,y1], [x2,y2], ...]
 t, speed = 0.0, 0.0
 prev = None
 for coord in coords:
 if prev != None:
 dy = coord[1] - prev[1]
 d = ((coord[0] - prev[0]) ** 2 + dy ** 2) ** 0.5
 accel = -9.80665 * dy / d
 for dt in quadratic_roots(accel, speed, -d):
 if dt > 0:
 speed += accel * dt
 t += dt
 prev = coord
 return t

Algorithm
Aaaaaand put it all together
def main(n=6):
(y1, y2) = (1.0, 0.0)
(x1, x2) = (0.0, 1.0)
<pre>coords = [# initial guess: straight line</pre>
[x1 + (x2 - x1) * i / n,
y1 + (y2 - y1) * i / n]
<pre>for i in range(n + 1)</pre>
]
<pre>f = falling_time</pre>
h = 0.00001
<pre>while newton_minimizer_step(f, coords, h) > 0.01:</pre>
<pre>print(coords)</pre>
ifname == 'main':
main()

Algorithm

Computing derivatives numerically:

```
def derivative(f, coords, i, j, h):
    x = coords[i][j]
    coords[i][j] = x + h; f2 = f(coords)
    coords[i][j] = x - h; f1 = f(coords)
    coords[i][j] = x
    return (f2 - f1) / (2 * h)
```

Why not (f(x + h) - f(x)) / h?

• Breaking the intrinsic asymmetry reduces accuracy

\sim Words of Wisdom \sim

If your problem has {fundamental feature} that your solution doesn't, you've created more problems.

```
Algorithm
```

```
Let's define quadratic_roots...
def quadratic_roots(two_a, b, c):
    D = b * b - 2 * two_a * c
    if D >= 0:
        if D > 0:
            r = D ** 0.5
            roots = [(-b + r) / two_a, (-b - r) / two_a]
    else:
            roots = [-b / two_a]
else:
        roots = []
return roots
```

14/25

Algorithm

(Demo)

Analysis

Error analysis: If x_{∞} is the root and $\epsilon_k = x_k - x_{\infty}$ is the error, then:

$$\begin{aligned} (\mathbf{x}_{k+1} - \mathbf{x}_{\infty}) &= (\mathbf{x}_k - \mathbf{x}_{\infty}) - \frac{f(\mathbf{x}_k)}{f'(\mathbf{x}_k)} & (\text{Newton step}) \\ \epsilon_{k+1} &= \epsilon_k - \frac{f(\mathbf{x}_k)}{f'(\mathbf{x}_k)} & (\text{error step}) \\ \epsilon_{k+1} &= \epsilon_k - \frac{f(\mathbf{x}_{\infty}) + \epsilon_k f'(\mathbf{x}_{\infty}) + \frac{1}{2} \epsilon_k^2 f''(\mathbf{x}_{\infty}) + \cdots}{f'(\mathbf{x}_{\infty}) + \epsilon_k f''(\mathbf{x}_{\infty}) + \cdots} & (\text{Taylor series}) \\ \epsilon_{k+1} &= \frac{\frac{1}{2} \epsilon_k^2 f''(\mathbf{x}_{\infty}) + \epsilon_k f''(\mathbf{x}_{\infty}) + \cdots}{f'(\mathbf{x}_{\infty}) + \epsilon_k f''(\mathbf{x}_{\infty}) + \cdots} & (\text{simplify}) \end{aligned}$$

As $\epsilon_{\pmb{k}} \rightarrow 0,$ the " \cdots " terms are quickly dominated. Therefore:

- If $f'(x_{\infty}) \approx 0$, then $\epsilon_{k+1} \propto \epsilon_k$ (slow: # of correct digits adds)
- Otherwise, we have $\epsilon_{k+1} \propto \epsilon_k^2$ (fast: # of correct digits **doubles**)

Final thoughts

Notes: There are subtleties I brushed under the rug:

• The physics is much more complicated (why?)

• The numerical code can break easily (why?) Can't tell why?

cun e cen why.

What happens if y1 = 0.5 instead of y1 = 1.0?

Addendum 1

- **Q:** Does knowing $f(x_1)$, $f'(x_1)$, $f''(x_1)$, ... let you predict $f(x_2)$?
- A: Obviously! ...not :) counterexample:

However, knowing derivatives would be enough for analytic functions!

Addendum 2

By contrast: Unlike + and ×, exponentiation is **not** well-understood! *Table-maker's dilemma* (Prof. William Kahan):

- $\bullet\,$ Nobody knows cost of computing x^{y} with correct rounding (!)
- \bullet We don't even know if it's possible with $\mathit{finite}\xspace$ memory (!!!)

So, polynomials are *really* nice!

Analysis

Some failure modes:

- f is flat near root: too slow
- $f'(x) \approx 0$ = shoots off into infinity (n.b. if x != 0 not a solution)
- Stable oscillation trap

Intuition: Think adversarially: create "tricky" f that looks root-less

- Obviously this is possible... just put the root far away
- Therefore Newton-Raphson can't be foolproof

erkeley) CS 61A/CS 98-52 18/25

Addendum 1

There's never a one-size-fits-all solution

• Must *always* know **something** about problem structure

Typical assumptions (stronger assumptions = better results):

- Vaguely predictable: Continuity
- Somewhat predictable: Differentiability
- Pretty predictable: Smoothness (infinite-differentiability)
- Extremely predictable: Analyticity (approximable by polynomial)
 - Function "equals" its infinite Taylor series
 - Also said to be holomorphic³

³Equivalent to complex-differentiability: $f'(x) = \lim_{h \to 0} (f(x+h) - f(x))/h, h \in \mathbb{C}.$

hh	enc	lum	2

Fun facts:

- Why are *polynomials* fundamental? Why not, say, exponentials?
 - Pretty much everything is built on addition & multiplication!
 - $\bullet~$ Study of polynomials = study of addition & multiplication
- Polynomials are awesome
 - Polynomials can approximate real-world functions very well
 - Pretty much everything about polynomials has been solved
 - $\bullet\,$ Global root bound (Fujiwara^4) $\implies\,$ you know where to start
 - $\bullet\,$ Minimal root separation (Mahler) $\,\Longrightarrow\,$ you know when to ${\bf stop}\,$
 - $\bullet\,$ Guaranteed root-finding (Sturm) $\,\Longrightarrow\,$ you can binary-search

 4 If $\sum_{k=0}^{n} a_{n-k} x^{k} = 0$ then $|x| \le 2 \max_{k} \sqrt[k]{|a_{k}/a_{n}|}$

Addendum 3

Fun fact: If *f* is analytic, you can compute *f'* by evaluating *f* **only once**! Any guesses how? **Complex-step differentiation**!

$$\begin{split} f(x+ih) &\approx f(x) + i \, h \, f'(x) \\ \text{Im} \big(f(x+ih) \big) &\approx \quad h \, f'(x) \\ f'(x) &\approx \frac{\text{Im} \big(f(x+ih) \big)}{h} \end{split} \tag{imaginary parts match}$$

Features:

- More accurate: Avoids "catastrophic cancellation" in subtraction
- Faster (sometimes): f evaluated only once
- Difficult for $\geq 2^{nd}$ derivatives (need multicomplex numbers)

Hope you learned something new!

P.S.: Did you prefer the coding part? Or the math part?

 Mehrdad Niknami (UC Berkey)
 C5 61A/C5 96:52
 25/25