CS 61A/CS 98-52

Mehrdad Niknami

University of California, Berkeley

Mehrdad Niknami (UC Berkeley)

Preliminaries

Last lecture was on equation-solving:
e "Given f and initial guess xp, solve f(x) = 0"
This lecture is on optimization: arg min, F(x)

e “Given F and initial guess xo, find x that minimizes F(x)"

Mehrdad Niknami (UC Berkeley)

Brachistochrone Problem

Ideally: Learn fancy math, derive the answer, plug in the formula.
Oh, sorry... did you say you're a programmer?

@ Math is hard

@ Physics is hard

Q We're lazy

@ Why learn something new when you can burn electricity instead?
OK but honestly the math is a little complicated...

o Calculus of variations... Euler-Lagrange differential eqn... maybe?

@ Take Physics 105... have fun!

o Don't get wrecked

Mehrdad Niknami (UC Berkeley)

Algorithm

Use Newton-Raphson!
...but wasn't that for finding roots? Not optimizing?
Actually, it's used for both:

o If F is differentiable, minimizing F reduces to root-finding:

o Caveat: must avoid maxima and inflection points

o Easy in 1-D: only + directions to check for increase/decrease

e Good luck in N-D... infinitely many directions

FYI: This lecture might get a little... intense... and math-y
If it's hard, don’t panic! It's okpy! They won't all be like this!
Just try to enjoy it, ask questions, & learn as much as you can. :)

Ready?!

Mehrdad Niknami (UC Berkeley)

Brachistochrone Problem

Let's solve a realistic problem.

It's the brachistochrone (“shortest time") problem:
@ Drop a ball on a ramp
@ Let it roll down

© What shape minimizes the travel time?

Mehrdad Niknami (UC Berkeley)

Brachistochrone Problem

Joking aside...

Most problems don’t have a nice formula, so you'll need algorithms.

Let's get our hands dirty! 10
Remember Riemann sums?
0.8
This is similar:
) . 0.6
@ Chop up the ramp into line
segments (but hold ends fixed) 04 4
@ Move around the anchors to 0.2 1
minimize travel time 00

Q: How do you do this?

Mehrdad Niknami (UC Berkeley)

Algorithm

Newton-Raphson method for optimization:
@ Assume F is approximately quadratic! (so f = F’ approx. linear)
@ Guess some xp intelligently
@ Repeatedly solve linear approximation? of f = F’:
(i) = F(xkt1) = () (X — xkt1)
f(xk41) =0
= X1 = x— /() T (%)
We ignored F! Avoid maxima and inflection points! (How?)

Q ...Profit?

'Why are quadratics common? Energy/cost are quadratic (K = %mvz, P=1I’R.)
2You'll see linearization ALL the time in engineering

Mehrdad Niknami (UC

http://mathworld.wolfram.com/BrachistochroneProblem.html

Algorithm

Wait, but we have a function of many variables. What do?
A couple options:
@ Fully multivariate Newton-Raphson:
Fir1 = % — V(%) V(R
Taught in EE 219A, 227C, 144/244, etc... (need Math 53 and 54)

@ Newton coordinate-descent

Mehrdad Niknami (UC Berkeley)

Algorithm

Newton step for minimization:

def newton_minimizer_step(F, coords, h):
delta = 0.0
for i in range(l, len(coords) - 1):
for j in range(len(coords([i])):

def f£(c): return derivative(F, c, i, j, h)
def df(c): return derivative(f, c, i, j, h)
step = -f(coords) / df (coords)
delta += abs(step)
coords[i] [j] += step

return delta

Side note: Notice a potential bug? What's the fix?
Notice a 33% inefficiency? What's the fix?

Mehrdad Niknami (UC Berkeley)

Algorithm

What is our objective function F to minimize?

def falling_time(coords):
t, speed = 0.0, 0.0
prev = None
for coord in coords:
if prev != None:
dy = coord[1] - prev[i]
d = ((coord[0] - prev[0]) *x 2 + dy ** 2) *x 0.5
accel = -9.80665 * dy / d
for dt in quadratic_roots(accel, speed, -d):
if dt > 0:
speed += accel * dt
t += dt
prev = coord
return t

Mehrdad Niknami (UC Berkeley)

Algorithm

Aaaaaand put it all together

def main(n=6):
(y1, y2) = (1.0, 0.0)
(x1, x2) =
coords = [
[x1 + (x2 - x1) *i / n,
yl + (y2 - y1) * i / n]
for i in range(n + 1)

]
f = falling_time
h = 0.00001

while newton_minimizer_step(f, coords, h) > 0.01:
print (coords)

if __name == '_main__"':

main()

Algorithm

Coordinate descent:
@ Take xp, use it to minimize F, holding others fixed
@ Take yj, use it to minimize F, holding others fixed
© Take xz, use it to minimize F, holding others fixed
@ Take y», use it to minimize F, holding others fixed
(5 J
@ Cycle through again

Doesn't work as often, but it works very well here.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 10/25

Algorithm

Computing derivatives numerically:

def derivative(f, coords, i, j, h):
x = coords[i] [j]
coords[il[j] = x + h; £2 = f(coords)
coords[i][j] = x - h; f1 = f(coords)
coords[il [j] = x
return (£2 - f1) / (2 * h)

Why not (£(x + h) - £(x)) / h?
@ Breaking the intrinsic asymmetry reduces accuracy
~ Words of Wisdom ~

If your problem has {fundamental feature} that your solution doesn't,
you've created more problems.

Mehrdad Niknami (UC Berkeley)

Algorithm

Let's define quadratic_roots...

def quadratic_roots(two_a, b, c):
D=bx*xb -2 % two_a * ¢c

if D >= 0:
if D > 0O:
r =D *x 0.5
roots = [(-b + r) / two_a, (b - r) / two_al
else:

roots = [-b / two_a]
else:
roots = []
return roots

Mehrdad Niknami (UC Berkeley)

Algorithm

(Demo)

Mehrdad Niknami (UC

Analysis

Error analysis: If x.. is the root and €, = xx — x. is the error, then:

f(xx)

(X1 — Xoo) = (X — Xo0) — (%) (Newton step)
f(x
€k+1 = €k — f’((Xi)) (error step)
f/ - Zf‘ll
€ht1 = €k — Loe] + exf"(ee) + () + (Taylor series)
/(%) + Ckf”(xoc) +
1 Zf”()+
= 2¢ implify
Ck+1 Floo) + cxF"(o0) + (simplify)
As ¢, — 0, the “--." terms are quickly dominated. Therefore:

o If f/(xo) ~ 0, then €xp1 o €k (slow: # of correct digits adds)

o Otherwise, we have ¢4 o €7 (fast: # of correct digits doubles)

Mehrdad Niknami (UC Berkeley)

‘

Final thoughts

Notes: There are subtleties | brushed under the rug:
o The physics is much more complicated (why?)
@ The numerical code can break easily (why?)

Can't tell why?

What happens if y1 = 0.5 instead of y1 = 1.07

Mehrdad Niknami (UC Berkeley) CS 61A/CS 19/25

Addendum 1

Q: Does knowing f(x1), f'(x1), f”(x1). ... let you predict f(x2)?

A: Obviously! ...not :) counterexample:

0.8
0.6
0.4
“Ux o ifx >0
f(x) _ e T x . 0.2
0 otherwise t
-1 1 2 3 4

Indistinguishable from 0 for x < 0

However, knowing derivatives would be enough for analytic functions!

Mehrdad Niknami (UC Berkeley)

Addendum 2

By contrast: Unlike 4+ and X, exponentiation is not well-understood!
Table-maker’s dilemma (Prof. William Kahan):
@ Nobody knows cost of computing x” with correct rounding (!)

o We don’t even know if it's possible with finite memory (!!!)

So, polynomials are really nice!

Some failure modes:
o f is flat near root: too slow
o f’(x) & 0 = shoots off into infinity (n.b. if x != 0 not a solution)

o Stable oscillation trap

-15
Intuition: Think adversarially: create “tricky” f that /looks root-less
e Obviously this is possible... just put the root far away

o Therefore Newton-Raphson can’t be foolproof

Mehrdad Niknami (UC Berkeley)

Addendum 1

There's never a one-size-fits-all solution
o Must always know something about problem structure
Typical assumptions (stronger assumptions = better results):
o Vaguely predictable: Continuity
o Somewhat predictable: Differentiability
o Pretty predictable: Smoothness (infinite-differentiability)
o Extremely predictable: Analyticity (approximable by polynomial)
o Function “equals” its infinite Taylor series

o Also said to be holomorphic®

3Equivalent to complex-differentiability: f'(x) = 'I'imo(r’(x +h) —f(x))/h, heC.

Mehrdad Niknami (UC Berkeley)

Addendum 2

Fun facts:
o Why are polynomials fundamental? Why not, say, exponentials?
o Pretty much everything is built on addition & multiplication!
o Study of polynomials = study of addition & multiplication
o Polynomials are awesome
o Polynomials can approximate real-world functions very well
o Pretty much everything about polynomials has been solved
o Global root bound (Fujiwara®) == you know where to start
e Minimal root separation (Mahler) = you know when to stop

o Guaranteed root-finding (Sturm) = you can binary-search

“If >h_oan «x* =0 then [x] < 2max{/ ‘ak/a,,{

Mehrdad Niknami (UC Berkeley)

Addendum 3

Fun fact: If f is analytic, you can compute f’ by evaluating f only once!
Any guesses how? Complex-step differentiation!
f(x + ih) ~ f(x) +ihf'(x)
m(f(x + ih)) = hf'(x) (imaginary parts match)

Fx) ~ Im(f();]-%— ih))

Features:
@ More accurate: Avoids “catastrophic cancellation” in subtraction
o Faster (sometimes): f evaluated only once

o Difficult for > 2" derivatives (need multicomplex numbers)

Mehrdad Niknami (UC

https://en.wikipedia.org/wiki/Properties_of_polynomial_roots#Other_bounds
https://blogs.mathworks.com/cleve/2013/10/14/complex-step-differentiation/

Done!

Hope you learned something new!

P.S.: Did you prefer the coding part? Or the math part?

Mehrdad Niknami (UC B

