FYI: This lecture might get a little... intense... and math-y If it's hard, don't panic! It's okpy! They won't all be like this! Just try to enjoy it, ask questions, \& learn as much as you can. :) Ready?!

Mehrdad Niknami
University of California, Berkeley

Preliminaries

Last lecture was on equation-solving

- "Given f and initial guess x_{0}, solve $f(x)=0$ "

This lecture is on optimization: $\arg \min _{x} F(x)$

- "Given F and initial guess x_{0}, find x that minimizes $F(x)$ "

Brachistochrone Problem

Ideally: Learn fancy math, derive the answer, plug in the formula.
Oh, sorry... did you say you're a programmer?
(1) Math is hard
(2) Physics is hard
(3) We're lazy
(9) Why learn something new when you can burn electricity instead?

OK but honestly the math is a little complicated..

- Calculus of variations... Euler-Lagrange differential eqn... maybe?
- Take Physics $105 \ldots$ have fun!
- Don't get wrecked

Algorithm

Use Newton-Raphson!
..but wasn't that for finding roots? Not optimizing?
Actually, it's used for both:

- If F is differentiable, minimizing F reduces to root-finding

$$
F^{\prime}(x)=f(x)=0
$$

- Caveat: must avoid maxima and inflection points
- Easy in 1-D: only \pm directions to check for increase/decrease
- Good luck in N-D... infinitely many directions

Brachistochrone Problem

Let's solve a realistic problem.
It's the brachistochrone ("shortest time") problem:
(1) Drop a ball on a ramp
(2) Let it roll down
(3) What shape minimizes the travel time?

\Longrightarrow How would you solve this?

Brachistochrone Problem

Joking aside...
Most problems don't have a nice formula, so you'll need algorithms.
Let's get our hands dirty!
Remember Riemann sums?
This is similar:
(1) Chop up the ramp into line segments (but hold ends fixed)
(2) Move around the anchors to minimize travel time

Q: How do you do this?

Algorithm

Newton-Raphson method for optimization:
(1) Assume F is approximately quadratic ${ }^{1}$ (so $f=F^{\prime}$ approx. linear)
(2) Guess some x_{0} intelligently
(3) Repeatedly solve linear approximation ${ }^{2}$ of $f=F^{\prime}$:

$$
\begin{aligned}
f\left(x_{k}\right)-f\left(x_{k+1}\right) & =f^{\prime}\left(x_{k}\right)\left(x_{k}-x_{k+1}\right) \\
f\left(x_{k+1}\right) & =0 \\
\Longrightarrow \quad x_{k+1} & =x_{k}-f^{\prime}\left(x_{k}\right)^{-1} f\left(x_{k}\right)
\end{aligned}
$$

We ignored F ! Avoid maxima and inflection points! (How?)

- ...Profit?

[^0]Wait, but we have a function of many variables. What do?
A couple options:
© Fully multivariate Newton-Raphson:

$$
\vec{x}_{k+1}=\vec{x}_{k}-\vec{\nabla} \vec{f}\left(\vec{x}_{k}\right)^{-1} \vec{f}\left(\vec{x}_{k}\right)
$$

Taught in EE 219A, 227C, 144/244, etc... (need Math 53 and 54)
(3) Newton coordinate-descent

Algorithm

Newton step for minimization
def newton_minimizer_step(F, coords, h)
delta $=0.0$
for i in range(1, len(coords) - 1):
for j in range (len(coords[i])):
def $f(c)$: return derivative ($F, \mathrm{c}, \mathrm{i}, \mathrm{j}, \mathrm{h}$)
def $\mathrm{df}(\mathrm{c})$: return derivative(f, $\mathrm{c}, \mathrm{i}, \mathrm{j}, \mathrm{h})$
step $=-f($ coords $) / d f($ coords $)$
delta += abs(step)
coords[i][j] += step
return delta
Side note: Notice a potential bug? What's the fix?
Notice a 33% inefficiency? What's the fix?

Algorithm

What is our objective function F to minimize?

```
def falling_time(coords): # coords = [[x1,y1], [x2,y2], ...]
    t, speed = 0.0, 0.0
    prev = None
    for coord in coords:
        if prev != None:
            dy = coord[1] - prev[1]
            d = ((coord[0] - prev[0]) ** 2 + dy ** 2) ** 0.5
            accel = -9.80665 * dy / d
            for dt in quadratic_roots(accel, speed, -d):
            if dt > 0:
                    speed += accel * dt
                    t += dt
        prev = coord
    return t

\section*{Algorithm}

Aaaaaand put it all together
def main \((\mathrm{n}=6)\) :
\((y 1, y 2)=(1.0,0.0)\)
\((x 1, x 2)=(0.0,1.0)\)
coords \(=\) [ \# initial guess: straight line
\([\mathrm{x} 1+(\mathrm{x} 2-\mathrm{x} 1) * i / \mathrm{n}\),
\(\mathrm{y} 1+(\mathrm{y} 2-\mathrm{y} 1) * \mathrm{i} / \mathrm{n}]\)
for \(i\) in range \((n+1)\)
]
f = falling_time
\(\mathrm{h}=0.00001\)
while newton_minimizer_step(f, coords, h) > 0.01 : print(coords)
if __name__ == ' __main_-':
main()

Coordinate descent:
(1) Take \(x_{1}\), use it to minimize \(F\), holding others fixed
(2) Take \(y_{1}\), use it to minimize \(F\), holding others fixed
(3) Take \(x_{2}\), use it to minimize \(F\), holding others fixed
(c) Take \(y_{2}\), use it to minimize \(F\), holding others fixed
(3)
- Cycle through again

Doesn't work as often, but it works very well here

\section*{Mehrdad Niknami (UC Berkeley) CS 61A/CS 98.52}

\section*{Algorithm}

Computing derivatives numerically:
def derivative(f, coords, i, j, h):
\(\mathrm{x}=\operatorname{coords[i][j]}\)
coords[i][j] \(=x+h ; \quad f 2=f(\) coords \()\)
coords[i][j] \(=x-h ; f 1=f(c o o r d s)\)
coords[i][j] \(=x\)
return (f2 - f1) / ( 2 * h)
Why not \((f(x+h)-f(x)) / h\) ?
- Breaking the intrinsic asymmetry reduces accuracy
\[
\sim \text { Words of Wisdom ~ }
\]

If your problem has \{fundamental feature\} that your solution doesn't, you've created more problems.

\section*{Algorithm}

Let's define quadratic_roots...
def quadratic_roots(two_a, b, c):
\(\mathrm{D}=\mathrm{b} * \mathrm{~b}-2 *\) two_a * c
if \(D>=0\) :
if \(D>0\) :
\(\mathrm{r}=\mathrm{D} * * 0.5\)
roots \(=[(-b+r) /\) two_a, ( \(-\mathrm{b}-\mathrm{r}) /\) two_a \(]\)
else:
roots \(=\) [-b / two_a]
else:
roots \(=[]\)
return roots

\section*{Algorithm}

Error analysis: If \(x_{\infty}\) is the root and \(\epsilon_{k}=x_{k}-x_{\infty}\) is the error, then:
\[
\begin{array}{rlrl}
\left(x_{k+1}-x_{\infty}\right) & =\left(x_{k}-x_{\infty}\right)-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)} & & \text { (Newton step) } \\
\epsilon_{k+1} & =\epsilon_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)} & & \text { (error step) } \\
\epsilon_{k+1} & =\epsilon_{k}-\frac{f\left(x_{\infty}\right)+\epsilon_{k} f^{\prime}\left(x_{\infty}\right)+\frac{1}{2} \epsilon_{k}^{2} f^{\prime \prime}\left(x_{\infty}\right)+\cdots}{f^{\prime}\left(x_{\infty}\right)+\epsilon_{k} f^{\prime \prime}\left(x_{\infty}\right)+\cdots} & \text { (Taylor series) } \\
\epsilon_{k+1} & =\frac{\frac{1}{2} \epsilon_{k}^{2} f^{\prime \prime}\left(x_{\infty}\right)+\cdots}{f^{\prime}\left(x_{\infty}\right)+\epsilon_{k} f^{\prime \prime}\left(x_{\infty}\right)+\cdots} & \text { (simplify) }
\end{array}
\]

As \(\epsilon_{k} \rightarrow 0\), the ". . " terms are quickly dominated. Therefore:
- If \(f^{\prime}\left(x_{\infty}\right) \approx 0\), then \(\epsilon_{k+1} \propto \epsilon_{k}\) (slow: \# of correct digits adds)
- Otherwise, we have \(\epsilon_{k+1} \propto \epsilon_{k}^{2}\) (fast: \# of correct digits doubles)


\section*{Final thoughts}

Notes: There are subtleties I brushed under the rug:
- The physics is much more complicated (why?)
- The numerical code can break easily (why?)

Can't tell why?
What happens if \(\mathrm{y} 1=0.5\) instead of \(\mathrm{y} 1=1.0\) ?

\section*{Addendum 1}

Q: Does knowing \(f\left(x_{1}\right), f^{\prime}\left(x_{1}\right), f^{\prime \prime}\left(x_{1}\right), \ldots\) let you predict \(f\left(x_{2}\right)\) ?
A: Obviously! ...not :) counterexample:
\(f(x)= \begin{cases}e^{-1 / x} & \text { if } x>0 \\ 0 & \text { otherwise }\end{cases}\)


However, knowing derivatives would be enough for analytic functions!

\section*{Addendum 2}

By contrast: Unlike + and \(\times\), exponentiation is not well-understood! Table-maker's dilemma (Prof. William Kahan):
- Nobody knows cost of computing \(x^{y}\) with correct rounding (!)
- We don't even know if it's possible with finite memory (!!!)

So, polynomials are really nice!

Some failure modes:
- \(f\) is flat near root: too slow
- \(f^{\prime}(x) \approx 0=\) shoots off into infinity (n.b. if \(x \quad!=0\) not a solution)
- Stable oscillation trap


Intuition: Think adversarially: create "tricky" \(f\) that looks root-less
- Obviously this is possible... just put the root far away
- Therefore Newton-Raphson can't be foolproof

\section*{Addendum 1}

There's never a one-size-fits-all solution
- Must always know something about problem structure

Typical assumptions (stronger assumptions \(=\) better results):
- Vaguely predictable: Continuity
- Somewhat predictable: Differentiability
- Pretty predictable: Smoothness (infinite-differentiability)
- Extremely predictable: Analyticity (approximable by polynomial)
- Function "equals" its infinite Taylor series
- Also said to be holomorphic \({ }^{3}\)
\[
{ }^{3} \text { Equivalent to complex-differentiability: } f^{\prime}(x)=\lim _{h \rightarrow 0}(f(x+h)-f(x)) / h, h \in \mathbb{C} .
\]

\section*{Addendum 2}

\section*{Fun facts:}
- Why are polynomials fundamental? Why not, say, exponentials?
- Pretty much everything is built on addition \& multiplication!
- Study of polynomials = study of addition \& multiplication
- Polynomials are awesome
- Polynomials can approximate real-world functions very well
- Pretty much everything about polynomials has been solved
- Global root bound (Fujiwara \({ }^{4}\) ) \(\Longrightarrow\) you know where to start
- Minimal root separation (Mahler) \(\Longrightarrow\) you know when to stop
- Guaranteed root-finding (Sturm) \(\Longrightarrow\) you can binary-search


\section*{Addendum 3}

Fun fact: If \(f\) is analytic, you can compute \(f^{\prime}\) by evaluating \(f\) only once!
Any guesses how? Complex-step differentiation!
\[
\begin{aligned}
f(x+i h) & \approx f(x)+i h f^{\prime}(x) \\
\operatorname{lm}(f(x+i h)) & \approx \quad h f^{\prime}(x) \quad \text { (imaginary parts match) } \\
f^{\prime}(x) & \approx \frac{\operatorname{lm}(f(x+i h))}{h}
\end{aligned}
\]

Features:
- More accurate: Avoids "catastrophic cancellation" in subtraction
- Faster (sometimes): \(f\) evaluated only once
- Difficult for \(\geq 2^{\text {nd }}\) derivatives (need multicomplex numbers)

Done!

Hope you learned something new!
P.S.: Did you prefer the coding part? Or the math part?```


[^0]:    ${ }^{1}$ Why are quadratics common? Energy/cost are quadratic ( $K=\frac{1}{2} m v^{2}, P=I^{2} R \ldots$ )
    ${ }^{2}$ You'll see linearization ALL the time in engineering

