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Warning

FYI: This lecture might get a little... intense... and math-y

If it’s hard, don’t panic! It’s okpy! They won’t all be like this!

Just try to enjoy it, ask questions, & learn as much as you can. :)

Ready?!
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Preliminaries

Last lecture was on equation-solving:

“Given f and initial guess x0, solve f (x) = 0”

This lecture is on optimization: arg minx F (x)

“Given F and initial guess x0, find x that minimizes F (x)”

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 3 / 25

Brachistochrone Problem

Let’s solve a realistic problem.

It’s the brachistochrone (“shortest time”) problem:

1 Drop a ball on a ramp

2 Let it roll down

3 What shape minimizes the travel time?
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=⇒ How would you solve this?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 4 / 25

Brachistochrone Problem

Ideally: Learn fancy math, derive the answer, plug in the formula.

Oh, sorry... did you say you’re a programmer?

1 Math is hard

2 Physics is hard

3 We’re lazy

4 Why learn something new when you can burn electricity instead?

OK but honestly the math is a little complicated...

Calculus of variations... Euler-Lagrange differential eqn... maybe?

Take Physics 105... have fun!

Don’t get wrecked
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Brachistochrone Problem

Joking aside...

Most problems don’t have a nice formula, so you’ll need algorithms.

Let’s get our hands dirty!
Remember Riemann sums?

This is similar:

1 Chop up the ramp into line
segments (but hold ends fixed)

2 Move around the anchors to
minimize travel time

Q: How do you do this?
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Algorithm

Use Newton-Raphson!

...but wasn’t that for finding roots? Not optimizing?

Actually, it’s used for both:

If F is differentiable, minimizing F reduces to root-finding:

F ′(x) = f (x) = 0

Caveat: must avoid maxima and inflection points

Easy in 1-D: only ± directions to check for increase/decrease

Good luck in N-D... infinitely many directions
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Algorithm

Newton-Raphson method for optimization:

1 Assume F is approximately quadratic1 (so f = F ′ approx. linear)

2 Guess some x0 intelligently

3 Repeatedly solve linear approximation2 of f = F ′:

f (xk)− f (xk+1) = f ′(xk) (xk − xk+1)

f (xk+1) = 0

=⇒ xk+1 = xk − f ′(xk)−1 f (xk)

We ignored F ! Avoid maxima and inflection points! (How?)

4 ...Profit?

1Why are quadratics common? Energy/cost are quadratic (K = 1
2
mv 2, P = I 2R...)

2You’ll see linearization ALL the time in engineering
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http://mathworld.wolfram.com/BrachistochroneProblem.html


Algorithm

Wait, but we have a function of many variables. What do?

A couple options:

1 Fully multivariate Newton-Raphson:

~xk+1 = ~xk − ~∇~f (~xk)−1~f (~xk)

Taught in EE 219A, 227C, 144/244, etc... (need Math 53 and 54)

2 Newton coordinate-descent
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Algorithm

Coordinate descent:

1 Take x1, use it to minimize F , holding others fixed

2 Take y1, use it to minimize F , holding others fixed

3 Take x2, use it to minimize F , holding others fixed

4 Take y2, use it to minimize F , holding others fixed

5 . . .

6 Cycle through again

Doesn’t work as often, but it works very well here.
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Algorithm

Newton step for minimization:

def newton_minimizer_step(F, coords, h):

delta = 0.0

for i in range(1, len(coords) - 1):

for j in range(len(coords[i])):

def f(c): return derivative(F, c, i, j, h)

def df(c): return derivative(f, c, i, j, h)

step = -f(coords) / df(coords)

delta += abs(step)

coords[i][j] += step

return delta

Side note: Notice a potential bug? What’s the fix?
Notice a 33% inefficiency? What’s the fix?
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Algorithm

Computing derivatives numerically:

def derivative(f, coords, i, j, h):

x = coords[i][j]

coords[i][j] = x + h; f2 = f(coords)

coords[i][j] = x - h; f1 = f(coords)

coords[i][j] = x

return (f2 - f1) / (2 * h)

Why not (f(x + h) - f(x)) / h?

Breaking the intrinsic asymmetry reduces accuracy

∼ Words of Wisdom ∼

If your problem has {fundamental feature} that your solution doesn’t,
you’ve created more problems.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 12 / 25

Algorithm

What is our objective function F to minimize?

def falling_time(coords): # coords = [[x1,y1], [x2,y2], ...]

t, speed = 0.0, 0.0

prev = None

for coord in coords:

if prev != None:

dy = coord[1] - prev[1]

d = ((coord[0] - prev[0]) ** 2 + dy ** 2) ** 0.5

accel = -9.80665 * dy / d

for dt in quadratic_roots(accel, speed, -d):

if dt > 0:

speed += accel * dt

t += dt

prev = coord

return t
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Algorithm

Let’s define quadratic roots...

def quadratic_roots(two_a, b, c):

D = b * b - 2 * two_a * c

if D >= 0:

if D > 0:

r = D ** 0.5

roots = [(-b + r) / two_a, (-b - r) / two_a]

else:

roots = [-b / two_a]

else:

roots = []

return roots
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Algorithm

Aaaaaand put it all together

def main(n=6):

(y1, y2) = (1.0, 0.0)

(x1, x2) = (0.0, 1.0)

coords = [ # initial guess: straight line

[x1 + (x2 - x1) * i / n,

y1 + (y2 - y1) * i / n]

for i in range(n + 1)

]

f = falling_time

h = 0.00001

while newton_minimizer_step(f, coords, h) > 0.01:

print(coords)

if __name__ == '__main__':

main()
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Algorithm

(Demo)
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Analysis

Error analysis: If x∞ is the root and εk = xk − x∞ is the error, then:

(xk+1 − x∞) = (xk − x∞)− f (xk)

f ′(xk)
(Newton step)

εk+1 = εk −
f (xk)

f ′(xk)
(error step)

εk+1 = εk −
����f (x∞) + εk f

′(x∞) + 1
2ε

2
k f
′′(x∞) + · · ·

f ′(x∞) + εk f ′′(x∞) + · · ·
(Taylor series)

εk+1 =
1
2ε

2
k f
′′(x∞) + · · ·

f ′(x∞) + εk f ′′(x∞) + · · ·
(simplify)

As εk → 0, the “· · · ” terms are quickly dominated. Therefore:

If f ′(x∞) ≈ 0, then εk+1 ∝ εk (slow: # of correct digits adds)

Otherwise, we have εk+1 ∝ ε2k (fast: # of correct digits doubles)
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Analysis

Some failure modes:

f is flat near root: too slow

f ′(x) ≈ 0 = shoots off into infinity (n.b. if x != 0 not a solution)

Stable oscillation trap

-0.5 0.5 1.0

-1.5

-1.0

-0.5

Intuition: Think adversarially: create “tricky” f that looks root-less

Obviously this is possible... just put the root far away

Therefore Newton-Raphson can’t be foolproof
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Final thoughts

Notes: There are subtleties I brushed under the rug:

The physics is much more complicated (why?)

The numerical code can break easily (why?)

Can’t tell why?

What happens if y1 = 0.5 instead of y1 = 1.0?
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Addendum 1

There’s never a one-size-fits-all solution

Must always know something about problem structure

Typical assumptions (stronger assumptions = better results):

Vaguely predictable: Continuity

Somewhat predictable: Differentiability

Pretty predictable: Smoothness (infinite-differentiability)

Extremely predictable: Analyticity (approximable by polynomial)

Function “equals” its infinite Taylor series

Also said to be holomorphic3

3Equivalent to complex-differentiability : f ′(x) = lim
h→0

(
f (x + h)− f (x)

)
/h, h ∈ C.
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Addendum 1

Q: Does knowing f (x1), f ′(x1), f ′′(x1), . . . let you predict f (x2)?

A: Obviously! ...not :) counterexample:

f (x) =

{
e−1/x if x > 0

0 otherwise
-1 1 2 3 4

0.2

0.4

0.6

0.8

Indistinguishable from 0 for x ≤ 0

However, knowing derivatives would be enough for analytic functions!
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Addendum 2

Fun facts:

Why are polynomials fundamental? Why not, say, exponentials?

Pretty much everything is built on addition & multiplication!

Study of polynomials = study of addition & multiplication

Polynomials are awesome

Polynomials can approximate real-world functions very well

Pretty much everything about polynomials has been solved

Global root bound (Fujiwara4) =⇒ you know where to start

Minimal root separation (Mahler) =⇒ you know when to stop

Guaranteed root-finding (Sturm) =⇒ you can binary-search

4If
∑n

k=0 an−kx
k = 0 then |x | ≤ 2 maxk k

√∣∣ak/an∣∣
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Addendum 2

By contrast: Unlike + and ×, exponentiation is not well-understood!

Table-maker’s dilemma (Prof. William Kahan):

Nobody knows cost of computing xy with correct rounding (!)

We don’t even know if it’s possible with finite memory (!!!)

So, polynomials are really nice!
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Addendum 3

Fun fact: If f is analytic, you can compute f ′ by evaluating f only once!

Any guesses how? Complex-step differentiation!

f (x + ih) ≈ f (x) + i h f ′(x)

Im
(
f (x + ih)

)
≈ h f ′(x) (imaginary parts match)

f ′(x) ≈
Im
(
f (x + ih)

)
h

Features:

More accurate: Avoids “catastrophic cancellation” in subtraction

Faster (sometimes): f evaluated only once

Difficult for ≥ 2nd derivatives (need multicomplex numbers)
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https://en.wikipedia.org/wiki/Properties_of_polynomial_roots#Other_bounds
https://blogs.mathworks.com/cleve/2013/10/14/complex-step-differentiation/


Done!

Hope you learned something new!

P.S.: Did you prefer the coding part? Or the math part?
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