
CS 61A/CS 98-52

Mehrdad Niknami

University of California, Berkeley

Credits: Mostly a direct Python adaptation of “Wizards and Warriors”, a
series by Eric Lippert, a principal developer of the C# compiler.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 1 / 30

https://ericlippert.com/2015/04/27/wizards-and-warriors-part-one/


Object-Oriented Design

Software engineering is a difficult discipline... unlike what you may think.

Programming models and software design are nontrivial endeavors.

Object-oriented programming is no exception to this.

OOP is far more than mere encapsulation + polymorphism + . . .

If you’ve never really struggled with OOP, you haven’t really seen OOP. ;)

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 2 / 30



Object-Oriented Design

Software engineering is a difficult discipline

... unlike what you may think.

Programming models and software design are nontrivial endeavors.

Object-oriented programming is no exception to this.

OOP is far more than mere encapsulation + polymorphism + . . .

If you’ve never really struggled with OOP, you haven’t really seen OOP. ;)

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 2 / 30



Object-Oriented Design

Software engineering is a difficult discipline... unlike what you may think.

Programming models and software design are nontrivial endeavors.

Object-oriented programming is no exception to this.

OOP is far more than mere encapsulation + polymorphism + . . .

If you’ve never really struggled with OOP, you haven’t really seen OOP. ;)

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 2 / 30



Object-Oriented Design

Software engineering is a difficult discipline... unlike what you may think.

Programming models and software design are nontrivial endeavors.

Object-oriented programming is no exception to this.

OOP is far more than mere encapsulation + polymorphism + . . .

If you’ve never really struggled with OOP, you haven’t really seen OOP. ;)

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 2 / 30



Object-Oriented Design

Software engineering is a difficult discipline... unlike what you may think.

Programming models and software design are nontrivial endeavors.

Object-oriented programming is no exception to this.

OOP is far more than mere encapsulation + polymorphism + . . .

If you’ve never really struggled with OOP, you haven’t really seen OOP. ;)

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 2 / 30



Object-Oriented Design

Software engineering is a difficult discipline... unlike what you may think.

Programming models and software design are nontrivial endeavors.

Object-oriented programming is no exception to this.

OOP is far more than mere encapsulation + polymorphism + . . .

If you’ve never really struggled with OOP, you haven’t really seen OOP. ;)

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 2 / 30



Object-Oriented Design

Software engineering is a difficult discipline... unlike what you may think.

Programming models and software design are nontrivial endeavors.

Object-oriented programming is no exception to this.

OOP is far more than mere encapsulation + polymorphism + . . .

If you’ve never really struggled with OOP, you haven’t really seen OOP. ;)

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 2 / 30



Object-Oriented Design

In OOP (and arguably programming in general), every procedure needs:

A pre-condition: assumptions it makes

A post-condition: guarantees it provides

These describe the procedure’s interface.

After all, if you knew nothing about a function, you couldn’t use it.

Often we hand-wave these without specifying them:

Sometimes we’re lucky and get it right! And everything works.

Other times we it bites us back later... and we don’t even realize.

Specifying interfaces correctly is crucial and difficult.

Let’s see some toy examples.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 3 / 30



Object-Oriented Design

In OOP (and arguably programming in general), every procedure needs:

A pre-condition: assumptions it makes

A post-condition: guarantees it provides

These describe the procedure’s interface.

After all, if you knew nothing about a function, you couldn’t use it.

Often we hand-wave these without specifying them:

Sometimes we’re lucky and get it right! And everything works.

Other times we it bites us back later... and we don’t even realize.

Specifying interfaces correctly is crucial and difficult.

Let’s see some toy examples.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 3 / 30



Object-Oriented Design

In OOP (and arguably programming in general), every procedure needs:

A pre-condition: assumptions it makes

A post-condition: guarantees it provides

These describe the procedure’s interface.

After all, if you knew nothing about a function, you couldn’t use it.

Often we hand-wave these without specifying them:

Sometimes we’re lucky and get it right! And everything works.

Other times we it bites us back later... and we don’t even realize.

Specifying interfaces correctly is crucial and difficult.

Let’s see some toy examples.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 3 / 30



Object-Oriented Design

In OOP (and arguably programming in general), every procedure needs:

A pre-condition: assumptions it makes

A post-condition: guarantees it provides

These describe the procedure’s interface.

After all, if you knew nothing about a function, you couldn’t use it.

Often we hand-wave these without specifying them:

Sometimes we’re lucky and get it right! And everything works.

Other times we it bites us back later... and we don’t even realize.

Specifying interfaces correctly is crucial and difficult.

Let’s see some toy examples.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 3 / 30



Object-Oriented Design

In OOP (and arguably programming in general), every procedure needs:

A pre-condition: assumptions it makes

A post-condition: guarantees it provides

These describe the procedure’s interface.

After all, if you knew nothing about a function, you couldn’t use it.

Often we hand-wave these without specifying them:

Sometimes we’re lucky and get it right! And everything works.

Other times we it bites us back later... and we don’t even realize.

Specifying interfaces correctly is crucial and difficult.

Let’s see some toy examples.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 3 / 30



Object-Oriented Design

In OOP (and arguably programming in general), every procedure needs:

A pre-condition: assumptions it makes

A post-condition: guarantees it provides

These describe the procedure’s interface.

After all, if you knew nothing about a function, you couldn’t use it.

Often we hand-wave these without specifying them:

Sometimes we’re lucky and get it right! And everything works.

Other times we it bites us back later... and we don’t even realize.

Specifying interfaces correctly is crucial and difficult.

Let’s see some toy examples.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 3 / 30



Object-Oriented Design

In OOP (and arguably programming in general), every procedure needs:

A pre-condition: assumptions it makes

A post-condition: guarantees it provides

These describe the procedure’s interface.

After all, if you knew nothing about a function, you couldn’t use it.

Often we hand-wave these without specifying them:

Sometimes we’re lucky and get it right! And everything works.

Other times we it bites us back later... and we don’t even realize.

Specifying interfaces correctly is crucial and difficult.

Let’s see some toy examples.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 3 / 30



Object-Oriented Design

In OOP (and arguably programming in general), every procedure needs:

A pre-condition: assumptions it makes

A post-condition: guarantees it provides

These describe the procedure’s interface.

After all, if you knew nothing about a function, you couldn’t use it.

Often we hand-wave these without specifying them:

Sometimes we’re lucky and get it right! And everything works.

Other times we it bites us back later... and we don’t even realize.

Specifying interfaces correctly is crucial and difficult.

Let’s see some toy examples.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 3 / 30



Object-Oriented Design

In OOP (and arguably programming in general), every procedure needs:

A pre-condition: assumptions it makes

A post-condition: guarantees it provides

These describe the procedure’s interface.

After all, if you knew nothing about a function, you couldn’t use it.

Often we hand-wave these without specifying them:

Sometimes we’re lucky and get it right! And everything works.

Other times we it bites us back later... and we don’t even realize.

Specifying interfaces correctly is crucial and difficult.

Let’s see some toy examples.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 3 / 30



Object-Oriented Design

In OOP (and arguably programming in general), every procedure needs:

A pre-condition: assumptions it makes

A post-condition: guarantees it provides

These describe the procedure’s interface.

After all, if you knew nothing about a function, you couldn’t use it.

Often we hand-wave these without specifying them:

Sometimes we’re lucky and get it right! And everything works.

Other times we it bites us back later... and we don’t even realize.

Specifying interfaces correctly is crucial and difficult.

Let’s see some toy examples.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 3 / 30



Object-Oriented Design

In OOP (and arguably programming in general), every procedure needs:

A pre-condition: assumptions it makes

A post-condition: guarantees it provides

These describe the procedure’s interface.

After all, if you knew nothing about a function, you couldn’t use it.

Often we hand-wave these without specifying them:

Sometimes we’re lucky and get it right! And everything works.

Other times we it bites us back later... and we don’t even realize.

Specifying interfaces correctly is crucial and difficult.

Let’s see some toy examples.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 3 / 30



Object-Oriented Design

Let’s jump in!

Here’s a scenario:

A wizard is a kind of player.

A warrior is a kind of player.

A staff is a kind of weapon.

A sword is a kind of weapon.

A player has a weapon.

=⇒ How do we model this problem?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 4 / 30



Object-Oriented Design

Let’s jump in!

Here’s a scenario:

A wizard is a kind of player.

A warrior is a kind of player.

A staff is a kind of weapon.

A sword is a kind of weapon.

A player has a weapon.

=⇒ How do we model this problem?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 4 / 30



Object-Oriented Design

Let’s jump in!

Here’s a scenario:

A wizard is a kind of player.

A warrior is a kind of player.

A staff is a kind of weapon.

A sword is a kind of weapon.

A player has a weapon.

=⇒ How do we model this problem?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 4 / 30



Object-Oriented Design

Let’s jump in!

Here’s a scenario:

A wizard is a kind of player.

A warrior is a kind of player.

A staff is a kind of weapon.

A sword is a kind of weapon.

A player has a weapon.

=⇒ How do we model this problem?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 4 / 30



Object-Oriented Design

Let’s jump in!

Here’s a scenario:

A wizard is a kind of player.

A warrior is a kind of player.

A staff is a kind of weapon.

A sword is a kind of weapon.

A player has a weapon.

=⇒ How do we model this problem?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 4 / 30



Object-Oriented Design

Let’s jump in!

Here’s a scenario:

A wizard is a kind of player.

A warrior is a kind of player.

A staff is a kind of weapon.

A sword is a kind of weapon.

A player has a weapon.

=⇒ How do we model this problem?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 4 / 30



Object-Oriented Design

Let’s jump in!

Here’s a scenario:

A wizard is a kind of player.

A warrior is a kind of player.

A staff is a kind of weapon.

A sword is a kind of weapon.

A player has a weapon.

=⇒ How do we model this problem?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 4 / 30



Object-Oriented Design

Let’s jump in!

Here’s a scenario:

A wizard is a kind of player.

A warrior is a kind of player.

A staff is a kind of weapon.

A sword is a kind of weapon.

A player has a weapon.

=⇒ How do we model this problem?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 4 / 30



Object-Oriented Design

We know OOP, so let’s use it!

Question: What classes do we need?

class Weapon(object):
...

class Staff(Weapon):
...

class Sword(Weapon):
...

class Player(object):
...
def get_weapon(self):

return self.w
def set_weapon(self, w):

self.w = w

class Wizard(Player):
...

class Warrior(Player):
...

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 5 / 30



Object-Oriented Design

We know OOP, so let’s use it!

Question: What classes do we need?

class Weapon(object):
...

class Staff(Weapon):
...

class Sword(Weapon):
...

class Player(object):
...
def get_weapon(self):

return self.w
def set_weapon(self, w):

self.w = w

class Wizard(Player):
...

class Warrior(Player):
...

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 5 / 30



Object-Oriented Design

We know OOP, so let’s use it!

Question: What classes do we need?

class Weapon(object):
...

class Staff(Weapon):
...

class Sword(Weapon):
...

class Player(object):
...
def get_weapon(self):

return self.w
def set_weapon(self, w):

self.w = w

class Wizard(Player):
...

class Warrior(Player):
...

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 5 / 30



Object-Oriented Design

We know OOP, so let’s use it!

Question: What classes do we need?

class Weapon(object):
...

class Staff(Weapon):
...

class Sword(Weapon):
...

class Player(object):
...
def get_weapon(self):

return self.w
def set_weapon(self, w):

self.w = w

class Wizard(Player):
...

class Warrior(Player):
...

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 5 / 30



Object-Oriented Design

We know OOP, so let’s use it!

Question: What classes do we need?

class Weapon(object):
...

class Staff(Weapon):
...

class Sword(Weapon):
...

class Player(object):
...
def get_weapon(self):

return self.w
def set_weapon(self, w):

self.w = w

class Wizard(Player):
...

class Warrior(Player):
...

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 5 / 30



Object-Oriented Design

We know OOP, so let’s use it!

Question: What classes do we need?

class Weapon(object):
...

class Staff(Weapon):
...

class Sword(Weapon):
...

class Player(object):
...
def get_weapon(self):

return self.w
def set_weapon(self, w):

self.w = w

class Wizard(Player):
...

class Warrior(Player):
...

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 5 / 30



Object-Oriented Design

We know OOP, so let’s use it!

Question: What classes do we need?

class Weapon(object):
...

class Staff(Weapon):
...

class Sword(Weapon):
...

class Player(object):
...
def get_weapon(self):

return self.w
def set_weapon(self, w):

self.w = w

class Wizard(Player):
...

class Warrior(Player):
...

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 5 / 30



Object-Oriented Design

Awesome, we’re done!

Oops... a new requirement has appeared! Or rather, two requirements:

A Warrior can only use a Sword.

A Wizard can only use a Staff.

How unexpected!!

Let’s incorporate these requirements. What do we do?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 6 / 30



Object-Oriented Design

Awesome, we’re done!

Oops...

a new requirement has appeared! Or rather, two requirements:

A Warrior can only use a Sword.

A Wizard can only use a Staff.

How unexpected!!

Let’s incorporate these requirements. What do we do?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 6 / 30



Object-Oriented Design

Awesome, we’re done!

Oops... a new requirement has appeared!

Or rather, two requirements:

A Warrior can only use a Sword.

A Wizard can only use a Staff.

How unexpected!!

Let’s incorporate these requirements. What do we do?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 6 / 30



Object-Oriented Design

Awesome, we’re done!

Oops... a new requirement has appeared! Or rather, two requirements:

A Warrior can only use a Sword.

A Wizard can only use a Staff.

How unexpected!!

Let’s incorporate these requirements. What do we do?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 6 / 30



Object-Oriented Design

Awesome, we’re done!

Oops... a new requirement has appeared! Or rather, two requirements:

A Warrior can only use a Sword.

A Wizard can only use a Staff.

How unexpected!!

Let’s incorporate these requirements. What do we do?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 6 / 30



Object-Oriented Design

Awesome, we’re done!

Oops... a new requirement has appeared! Or rather, two requirements:

A Warrior can only use a Sword.

A Wizard can only use a Staff.

How unexpected!!

Let’s incorporate these requirements. What do we do?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 6 / 30



Object-Oriented Design

Awesome, we’re done!

Oops... a new requirement has appeared! Or rather, two requirements:

A Warrior can only use a Sword.

A Wizard can only use a Staff.

How unexpected!!

Let’s incorporate these requirements. What do we do?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 6 / 30



Object-Oriented Design

Awesome, we’re done!

Oops... a new requirement has appeared! Or rather, two requirements:

A Warrior can only use a Sword.

A Wizard can only use a Staff.

How unexpected!!

Let’s incorporate these requirements.

What do we do?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 6 / 30



Object-Oriented Design

Awesome, we’re done!

Oops... a new requirement has appeared! Or rather, two requirements:

A Warrior can only use a Sword.

A Wizard can only use a Staff.

How unexpected!!

Let’s incorporate these requirements. What do we do?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 6 / 30



Object-Oriented Design

Obviously, we need to enforce the types somehow.

How about this?

class Player(object):
@abstractmethod
def get_weapon(self): raise NotImplementedError()
@abstractmethod
def set_weapon(self, w): raise NotImplementedError()

class Wizard(Player):
def get_weapon(self):

return self.w
def set_weapon(self, w):

assert isinstance(w, Staff), "weapon is not a Staff"
self.w = w

class Warrior(Player): ...

Is this good? (Hint: no...) What is the problem?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 7 / 30



Object-Oriented Design

Obviously, we need to enforce the types somehow. How about this?

class Player(object):
@abstractmethod
def get_weapon(self): raise NotImplementedError()
@abstractmethod
def set_weapon(self, w): raise NotImplementedError()

class Wizard(Player):
def get_weapon(self):

return self.w
def set_weapon(self, w):

assert isinstance(w, Staff), "weapon is not a Staff"
self.w = w

class Warrior(Player): ...

Is this good? (Hint: no...) What is the problem?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 7 / 30



Object-Oriented Design

Obviously, we need to enforce the types somehow. How about this?

class Player(object):
@abstractmethod
def get_weapon(self): raise NotImplementedError()
@abstractmethod
def set_weapon(self, w): raise NotImplementedError()

class Wizard(Player):
def get_weapon(self):

return self.w
def set_weapon(self, w):

assert isinstance(w, Staff), "weapon is not a Staff"
self.w = w

class Warrior(Player): ...

Is this good? (Hint: no...) What is the problem?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 7 / 30



Object-Oriented Design

Obviously, we need to enforce the types somehow. How about this?

class Player(object):
@abstractmethod
def get_weapon(self): raise NotImplementedError()
@abstractmethod
def set_weapon(self, w): raise NotImplementedError()

class Wizard(Player):
def get_weapon(self):

return self.w
def set_weapon(self, w):

assert isinstance(w, Staff), "weapon is not a Staff"
self.w = w

class Warrior(Player): ...

Is this good?

(Hint: no...) What is the problem?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 7 / 30



Object-Oriented Design

Obviously, we need to enforce the types somehow. How about this?

class Player(object):
@abstractmethod
def get_weapon(self): raise NotImplementedError()
@abstractmethod
def set_weapon(self, w): raise NotImplementedError()

class Wizard(Player):
def get_weapon(self):

return self.w
def set_weapon(self, w):

assert isinstance(w, Staff), "weapon is not a Staff"
self.w = w

class Warrior(Player): ...

Is this good? (Hint: no...)

What is the problem?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 7 / 30



Object-Oriented Design

Obviously, we need to enforce the types somehow. How about this?

class Player(object):
@abstractmethod
def get_weapon(self): raise NotImplementedError()
@abstractmethod
def set_weapon(self, w): raise NotImplementedError()

class Wizard(Player):
def get_weapon(self):

return self.w
def set_weapon(self, w):

assert isinstance(w, Staff), "weapon is not a Staff"
self.w = w

class Warrior(Player): ...

Is this good? (Hint: no...) What is the problem?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 7 / 30



Object-Oriented Design

Consider:

players = [Wizard(), Warrior()]
for player in players:

player.set_weapon(weapon)

Oops: AssertionError: weapon is not a Staff

...really?? Picking up the wrong weapon is a bug?!

No, it isn’t the programmer’s fault. Raise an error instead.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 8 / 30



Object-Oriented Design

Consider:

players = [Wizard(), Warrior()]
for player in players:

player.set_weapon(weapon)

Oops: AssertionError: weapon is not a Staff

...really?? Picking up the wrong weapon is a bug?!

No, it isn’t the programmer’s fault. Raise an error instead.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 8 / 30



Object-Oriented Design

Consider:

players = [Wizard(), Warrior()]
for player in players:

player.set_weapon(weapon)

Oops: AssertionError: weapon is not a Staff

...really??

Picking up the wrong weapon is a bug?!

No, it isn’t the programmer’s fault. Raise an error instead.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 8 / 30



Object-Oriented Design

Consider:

players = [Wizard(), Warrior()]
for player in players:

player.set_weapon(weapon)

Oops: AssertionError: weapon is not a Staff

...really?? Picking up the wrong weapon is a bug?!

No, it isn’t the programmer’s fault. Raise an error instead.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 8 / 30



Object-Oriented Design

Consider:

players = [Wizard(), Warrior()]
for player in players:

player.set_weapon(weapon)

Oops: AssertionError: weapon is not a Staff

...really?? Picking up the wrong weapon is a bug?!

No, it isn’t the programmer’s fault.

Raise an error instead.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 8 / 30



Object-Oriented Design

Consider:

players = [Wizard(), Warrior()]
for player in players:

player.set_weapon(weapon)

Oops: AssertionError: weapon is not a Staff

...really?? Picking up the wrong weapon is a bug?!

No, it isn’t the programmer’s fault. Raise an error instead.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 8 / 30



Object-Oriented Design

OK, so how about this?

class Wizard(Player):
def get_weapon(self):

return self.w
def set_weapon(self, w):

if not isinstance(w, Staff):
raise ValueError("weapon is not a Staff")

self.w = w

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 9 / 30



Object-Oriented Design

OK, so how about this?

class Wizard(Player):
def get_weapon(self):

return self.w
def set_weapon(self, w):

if not isinstance(w, Staff):
raise ValueError("weapon is not a Staff")

self.w = w

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 9 / 30



Object-Oriented Design

OK, so now we get an error:

players = [Wizard(), Warrior()]
for player in players:

player.set_weapon(weapon)

ValueError: weapon is not a Staff

But we declared every Player has a set weapon()!

=⇒ Player.set weapon() is a lie. It does not accept a mere Weapon.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 10 / 30



Object-Oriented Design

OK, so now we get an error:

players = [Wizard(), Warrior()]
for player in players:

player.set_weapon(weapon)

ValueError: weapon is not a Staff

But we declared every Player has a set weapon()!

=⇒ Player.set weapon() is a lie. It does not accept a mere Weapon.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 10 / 30



Object-Oriented Design

OK, so now we get an error:

players = [Wizard(), Warrior()]
for player in players:

player.set_weapon(weapon)

ValueError: weapon is not a Staff

But we declared every Player has a set weapon()!

=⇒ Player.set weapon() is a lie. It does not accept a mere Weapon.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 10 / 30



Object-Oriented Design

OK, so now we get an error:

players = [Wizard(), Warrior()]
for player in players:

player.set_weapon(weapon)

ValueError: weapon is not a Staff

But we declared every Player has a set weapon()!

=⇒ Player.set weapon() is a lie. It does not accept a mere Weapon.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 10 / 30



Object-Oriented Design

We say this violates the Liskov substitution principle (LSP):

When an instance of a superclass is expected, any instance of any of its
subclasses should be able to substitute for it.

However, there’s no single consistent type for w in Player.set weapon().
Its correct type depends on the type of self.

In fact, for set weapon to guarantee anything to the caller, the caller
must already know the type of self.

But at that point, we have no abstraction! Declaring a common
Player.set weapon() method provides no useful information.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 11 / 30



Object-Oriented Design

We say this violates the Liskov substitution principle (LSP):

When an instance of a superclass is expected, any instance of any of its
subclasses should be able to substitute for it.

However, there’s no single consistent type for w in Player.set weapon().
Its correct type depends on the type of self.

In fact, for set weapon to guarantee anything to the caller, the caller
must already know the type of self.

But at that point, we have no abstraction! Declaring a common
Player.set weapon() method provides no useful information.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 11 / 30



Object-Oriented Design

We say this violates the Liskov substitution principle (LSP):

When an instance of a superclass is expected, any instance of any of its
subclasses should be able to substitute for it.

However, there’s no single consistent type for w in Player.set weapon().

Its correct type depends on the type of self.

In fact, for set weapon to guarantee anything to the caller, the caller
must already know the type of self.

But at that point, we have no abstraction! Declaring a common
Player.set weapon() method provides no useful information.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 11 / 30



Object-Oriented Design

We say this violates the Liskov substitution principle (LSP):

When an instance of a superclass is expected, any instance of any of its
subclasses should be able to substitute for it.

However, there’s no single consistent type for w in Player.set weapon().
Its correct type depends on the type of self.

In fact, for set weapon to guarantee anything to the caller, the caller
must already know the type of self.

But at that point, we have no abstraction! Declaring a common
Player.set weapon() method provides no useful information.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 11 / 30



Object-Oriented Design

We say this violates the Liskov substitution principle (LSP):

When an instance of a superclass is expected, any instance of any of its
subclasses should be able to substitute for it.

However, there’s no single consistent type for w in Player.set weapon().
Its correct type depends on the type of self.

In fact, for set weapon to guarantee anything to the caller, the caller
must already know the type of self.

But at that point, we have no abstraction! Declaring a common
Player.set weapon() method provides no useful information.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 11 / 30



Object-Oriented Design

We say this violates the Liskov substitution principle (LSP):

When an instance of a superclass is expected, any instance of any of its
subclasses should be able to substitute for it.

However, there’s no single consistent type for w in Player.set weapon().
Its correct type depends on the type of self.

In fact, for set weapon to guarantee anything to the caller, the caller
must already know the type of self.

But at that point, we have no abstraction!

Declaring a common
Player.set weapon() method provides no useful information.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 11 / 30



Object-Oriented Design

We say this violates the Liskov substitution principle (LSP):

When an instance of a superclass is expected, any instance of any of its
subclasses should be able to substitute for it.

However, there’s no single consistent type for w in Player.set weapon().
Its correct type depends on the type of self.

In fact, for set weapon to guarantee anything to the caller, the caller
must already know the type of self.

But at that point, we have no abstraction! Declaring a common
Player.set weapon() method provides no useful information.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 11 / 30



Object-Oriented Design

Let’s try a different idea:

class Wizard(Player):
def get_weapon(self):

if not isinstance(w, Staff):
raise ValueError("weapon is not a Staff")

return self.w
def set_weapon(self, w):

self.w = w

Thoughts? Bad idea:

Wizard is now lying about what weapons it accepts

We’ve planted a ticking time bomb

We’ve only shifted the problem around

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 12 / 30



Object-Oriented Design

Let’s try a different idea:

class Wizard(Player):
def get_weapon(self):

if not isinstance(w, Staff):
raise ValueError("weapon is not a Staff")

return self.w
def set_weapon(self, w):

self.w = w

Thoughts? Bad idea:

Wizard is now lying about what weapons it accepts

We’ve planted a ticking time bomb

We’ve only shifted the problem around

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 12 / 30



Object-Oriented Design

Let’s try a different idea:

class Wizard(Player):
def get_weapon(self):

if not isinstance(w, Staff):
raise ValueError("weapon is not a Staff")

return self.w
def set_weapon(self, w):

self.w = w

Thoughts?

Bad idea:

Wizard is now lying about what weapons it accepts

We’ve planted a ticking time bomb

We’ve only shifted the problem around

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 12 / 30



Object-Oriented Design

Let’s try a different idea:

class Wizard(Player):
def get_weapon(self):

if not isinstance(w, Staff):
raise ValueError("weapon is not a Staff")

return self.w
def set_weapon(self, w):

self.w = w

Thoughts? Bad idea:

Wizard is now lying about what weapons it accepts

We’ve planted a ticking time bomb

We’ve only shifted the problem around

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 12 / 30



Object-Oriented Design

Let’s try a different idea:

class Wizard(Player):
def get_weapon(self):

if not isinstance(w, Staff):
raise ValueError("weapon is not a Staff")

return self.w
def set_weapon(self, w):

self.w = w

Thoughts? Bad idea:

Wizard is now lying about what weapons it accepts

We’ve planted a ticking time bomb

We’ve only shifted the problem around

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 12 / 30



Object-Oriented Design

Let’s try a different idea:

class Wizard(Player):
def get_weapon(self):

if not isinstance(w, Staff):
raise ValueError("weapon is not a Staff")

return self.w
def set_weapon(self, w):

self.w = w

Thoughts? Bad idea:

Wizard is now lying about what weapons it accepts

We’ve planted a ticking time bomb

We’ve only shifted the problem around

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 12 / 30



Object-Oriented Design

Let’s try a different idea:

class Wizard(Player):
def get_weapon(self):

if not isinstance(w, Staff):
raise ValueError("weapon is not a Staff")

return self.w
def set_weapon(self, w):

self.w = w

Thoughts? Bad idea:

Wizard is now lying about what weapons it accepts

We’ve planted a ticking time bomb

We’ve only shifted the problem around

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 12 / 30



Object-Oriented Design

What do we do?

We’ll get back to this. First, let’s consider other problems too.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 13 / 30



Object-Oriented Design

What do we do?

We’ll get back to this. First, let’s consider other problems too.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 13 / 30



Object-Oriented Design

Let’s assume we magically solved the previous problem.

Now consider how the code could evolve:

class Monster(object): ...

class Werewolf(Monster): ...

class Vampire(Monster): ...

New rule! A Warrior is likely to miss hitting a Werewolf after midnight.

How do we represent this?

Classes represent nouns (things); methods represent verbs (behavior)

We’re describing a behavior

Clearly we need something like a Player.attack() method

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 14 / 30



Object-Oriented Design

Let’s assume we magically solved the previous problem.

Now consider how the code could evolve:

class Monster(object): ...

class Werewolf(Monster): ...

class Vampire(Monster): ...

New rule! A Warrior is likely to miss hitting a Werewolf after midnight.

How do we represent this?

Classes represent nouns (things); methods represent verbs (behavior)

We’re describing a behavior

Clearly we need something like a Player.attack() method

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 14 / 30



Object-Oriented Design

Let’s assume we magically solved the previous problem.

Now consider how the code could evolve:

class Monster(object): ...

class Werewolf(Monster): ...

class Vampire(Monster): ...

New rule! A Warrior is likely to miss hitting a Werewolf after midnight.

How do we represent this?

Classes represent nouns (things); methods represent verbs (behavior)

We’re describing a behavior

Clearly we need something like a Player.attack() method

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 14 / 30



Object-Oriented Design

Let’s assume we magically solved the previous problem.

Now consider how the code could evolve:

class Monster(object): ...

class Werewolf(Monster): ...

class Vampire(Monster): ...

New rule! A Warrior is likely to miss hitting a Werewolf after midnight.

How do we represent this?

Classes represent nouns (things); methods represent verbs (behavior)

We’re describing a behavior

Clearly we need something like a Player.attack() method

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 14 / 30



Object-Oriented Design

Let’s assume we magically solved the previous problem.

Now consider how the code could evolve:

class Monster(object): ...

class Werewolf(Monster): ...

class Vampire(Monster): ...

New rule! A Warrior is likely to miss hitting a Werewolf after midnight.

How do we represent this?

Classes represent nouns (things); methods represent verbs (behavior)

We’re describing a behavior

Clearly we need something like a Player.attack() method

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 14 / 30



Object-Oriented Design

Let’s assume we magically solved the previous problem.

Now consider how the code could evolve:

class Monster(object): ...

class Werewolf(Monster): ...

class Vampire(Monster): ...

New rule!

A Warrior is likely to miss hitting a Werewolf after midnight.

How do we represent this?

Classes represent nouns (things); methods represent verbs (behavior)

We’re describing a behavior

Clearly we need something like a Player.attack() method

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 14 / 30



Object-Oriented Design

Let’s assume we magically solved the previous problem.

Now consider how the code could evolve:

class Monster(object): ...

class Werewolf(Monster): ...

class Vampire(Monster): ...

New rule! A Warrior is likely to miss hitting a Werewolf after midnight.

How do we represent this?

Classes represent nouns (things); methods represent verbs (behavior)

We’re describing a behavior

Clearly we need something like a Player.attack() method

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 14 / 30



Object-Oriented Design

Let’s assume we magically solved the previous problem.

Now consider how the code could evolve:

class Monster(object): ...

class Werewolf(Monster): ...

class Vampire(Monster): ...

New rule! A Warrior is likely to miss hitting a Werewolf after midnight.

How do we represent this?

Classes represent nouns (things); methods represent verbs (behavior)

We’re describing a behavior

Clearly we need something like a Player.attack() method

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 14 / 30



Object-Oriented Design

Let’s assume we magically solved the previous problem.

Now consider how the code could evolve:

class Monster(object): ...

class Werewolf(Monster): ...

class Vampire(Monster): ...

New rule! A Warrior is likely to miss hitting a Werewolf after midnight.

How do we represent this?

Classes represent nouns (things); methods represent verbs (behavior)

We’re describing a behavior

Clearly we need something like a Player.attack() method

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 14 / 30



Object-Oriented Design

Let’s assume we magically solved the previous problem.

Now consider how the code could evolve:

class Monster(object): ...

class Werewolf(Monster): ...

class Vampire(Monster): ...

New rule! A Warrior is likely to miss hitting a Werewolf after midnight.

How do we represent this?

Classes represent nouns (things); methods represent verbs (behavior)

We’re describing a behavior

Clearly we need something like a Player.attack() method

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 14 / 30



Object-Oriented Design

Let’s assume we magically solved the previous problem.

Now consider how the code could evolve:

class Monster(object): ...

class Werewolf(Monster): ...

class Vampire(Monster): ...

New rule! A Warrior is likely to miss hitting a Werewolf after midnight.

How do we represent this?

Classes represent nouns (things); methods represent verbs (behavior)

We’re describing a behavior

Clearly we need something like a Player.attack() method

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 14 / 30



Object-Oriented Design

Let’s codify the attack method:

class Player(object):
def attack(self, monster):

... # generic stuff

class Warrior(Player):
def attack(self, monster):

if isinstance(monster, Werewolf):
... # special rules for Werewolf

else:
Player.attack(self, monster) # generic stuff

How does this look?

Do you see a problem?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 15 / 30



Object-Oriented Design

Let’s codify the attack method:

class Player(object):
def attack(self, monster):

... # generic stuff

class Warrior(Player):
def attack(self, monster):

if isinstance(monster, Werewolf):
... # special rules for Werewolf

else:
Player.attack(self, monster) # generic stuff

How does this look?

Do you see a problem?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 15 / 30



Object-Oriented Design

Let’s codify the attack method:

class Player(object):
def attack(self, monster):

... # generic stuff

class Warrior(Player):
def attack(self, monster):

if isinstance(monster, Werewolf):
... # special rules for Werewolf

else:
Player.attack(self, monster) # generic stuff

How does this look?

Do you see a problem?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 15 / 30



Object-Oriented Design

Let’s codify the attack method:

class Player(object):
def attack(self, monster):

... # generic stuff

class Warrior(Player):
def attack(self, monster):

if isinstance(monster, Werewolf):
... # special rules for Werewolf

else:
Player.attack(self, monster) # generic stuff

How does this look?

Do you see a problem?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 15 / 30



Object-Oriented Design

Let’s codify the attack method:

class Player(object):
def attack(self, monster):

... # generic stuff

class Warrior(Player):
def attack(self, monster):

if isinstance(monster, Werewolf):
... # special rules for Werewolf

else:
Player.attack(self, monster) # generic stuff

How does this look?

Do you see a problem?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 15 / 30



Object-Oriented Design

Problem 2(a): isinstance is exactly what you need to avoid in OOP!

OOP uses dynamic dispatch for polymorphism, not conditionals

Caller may not even know all possibilities to be tested for

Problem 2(b): Why the asymmetry between Warrior and Werewolf?

Why put mutual interaction logic in Warrior instead of Werewolf?

Again: arbitrary symmetry breakage is a code smell—indicating a
potentially deeper problem.

Can lead to code fragmentation: later logic might just as easily end
up in Werewolf, suddenly multiplying the number of places such logic
is maintained, making maintainance difficult and error-prone.

Can cause other unforeseen problems—code smells often bite back!

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 16 / 30



Object-Oriented Design

Problem 2(a): isinstance is exactly what you need to avoid in OOP!

OOP uses dynamic dispatch for polymorphism, not conditionals

Caller may not even know all possibilities to be tested for

Problem 2(b): Why the asymmetry between Warrior and Werewolf?

Why put mutual interaction logic in Warrior instead of Werewolf?

Again: arbitrary symmetry breakage is a code smell—indicating a
potentially deeper problem.

Can lead to code fragmentation: later logic might just as easily end
up in Werewolf, suddenly multiplying the number of places such logic
is maintained, making maintainance difficult and error-prone.

Can cause other unforeseen problems—code smells often bite back!

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 16 / 30



Object-Oriented Design

Problem 2(a): isinstance is exactly what you need to avoid in OOP!

OOP uses dynamic dispatch for polymorphism, not conditionals

Caller may not even know all possibilities to be tested for

Problem 2(b): Why the asymmetry between Warrior and Werewolf?

Why put mutual interaction logic in Warrior instead of Werewolf?

Again: arbitrary symmetry breakage is a code smell—indicating a
potentially deeper problem.

Can lead to code fragmentation: later logic might just as easily end
up in Werewolf, suddenly multiplying the number of places such logic
is maintained, making maintainance difficult and error-prone.

Can cause other unforeseen problems—code smells often bite back!

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 16 / 30



Object-Oriented Design

Problem 2(a): isinstance is exactly what you need to avoid in OOP!

OOP uses dynamic dispatch for polymorphism, not conditionals

Caller may not even know all possibilities to be tested for

Problem 2(b): Why the asymmetry between Warrior and Werewolf?

Why put mutual interaction logic in Warrior instead of Werewolf?

Again: arbitrary symmetry breakage is a code smell—indicating a
potentially deeper problem.

Can lead to code fragmentation: later logic might just as easily end
up in Werewolf, suddenly multiplying the number of places such logic
is maintained, making maintainance difficult and error-prone.

Can cause other unforeseen problems—code smells often bite back!

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 16 / 30



Object-Oriented Design

Problem 2(a): isinstance is exactly what you need to avoid in OOP!

OOP uses dynamic dispatch for polymorphism, not conditionals

Caller may not even know all possibilities to be tested for

Problem 2(b): Why the asymmetry between Warrior and Werewolf?

Why put mutual interaction logic in Warrior instead of Werewolf?

Again: arbitrary symmetry breakage is a code smell—indicating a
potentially deeper problem.

Can lead to code fragmentation: later logic might just as easily end
up in Werewolf, suddenly multiplying the number of places such logic
is maintained, making maintainance difficult and error-prone.

Can cause other unforeseen problems—code smells often bite back!

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 16 / 30



Object-Oriented Design

Problem 2(a): isinstance is exactly what you need to avoid in OOP!

OOP uses dynamic dispatch for polymorphism, not conditionals

Caller may not even know all possibilities to be tested for

Problem 2(b): Why the asymmetry between Warrior and Werewolf?

Why put mutual interaction logic in Warrior instead of Werewolf?

Again: arbitrary symmetry breakage is a code smell—indicating a
potentially deeper problem.

Can lead to code fragmentation: later logic might just as easily end
up in Werewolf, suddenly multiplying the number of places such logic
is maintained, making maintainance difficult and error-prone.

Can cause other unforeseen problems—code smells often bite back!

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 16 / 30



Object-Oriented Design

Problem 2(a): isinstance is exactly what you need to avoid in OOP!

OOP uses dynamic dispatch for polymorphism, not conditionals

Caller may not even know all possibilities to be tested for

Problem 2(b): Why the asymmetry between Warrior and Werewolf?

Why put mutual interaction logic in Warrior instead of Werewolf?

Again: arbitrary symmetry breakage is a code smell—indicating a
potentially deeper problem.

Can lead to code fragmentation: later logic might just as easily end
up in Werewolf, suddenly multiplying the number of places such logic
is maintained, making maintainance difficult and error-prone.

Can cause other unforeseen problems—code smells often bite back!

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 16 / 30



Object-Oriented Design

Problem 2(a): isinstance is exactly what you need to avoid in OOP!

OOP uses dynamic dispatch for polymorphism, not conditionals

Caller may not even know all possibilities to be tested for

Problem 2(b): Why the asymmetry between Warrior and Werewolf?

Why put mutual interaction logic in Warrior instead of Werewolf?

Again: arbitrary symmetry breakage is a code smell—indicating a
potentially deeper problem.

Can lead to code fragmentation: later logic might just as easily end
up in Werewolf, suddenly multiplying the number of places such logic
is maintained, making maintainance difficult and error-prone.

Can cause other unforeseen problems—code smells often bite back!

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 16 / 30



Object-Oriented Design

Problem 2(a): isinstance is exactly what you need to avoid in OOP!

OOP uses dynamic dispatch for polymorphism, not conditionals

Caller may not even know all possibilities to be tested for

Problem 2(b): Why the asymmetry between Warrior and Werewolf?

Why put mutual interaction logic in Warrior instead of Werewolf?

Again: arbitrary symmetry breakage is a code smell—indicating a
potentially deeper problem.

Can lead to code fragmentation: later logic might just as easily end
up in Werewolf, suddenly multiplying the number of places such logic
is maintained, making maintainance difficult and error-prone.

Can cause other unforeseen problems—code smells often bite back!

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 16 / 30



Object-Oriented Design

Solving problem 2(a) (avoiding isinstance)

“Dispatch” means “deciding which method to use”.

With classes, we get single dispatch: dispatching based on a single
argument (self).

Fundamentally, we want double dispatch: deciding what method to call
based on the Player and Monster arguments.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 17 / 30



Object-Oriented Design

Solving problem 2(a) (avoiding isinstance)

“Dispatch” means “deciding which method to use”.

With classes, we get single dispatch: dispatching based on a single
argument (self).

Fundamentally, we want double dispatch: deciding what method to call
based on the Player and Monster arguments.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 17 / 30



Object-Oriented Design

Solving problem 2(a) (avoiding isinstance)

“Dispatch” means “deciding which method to use”.

With classes, we get single dispatch: dispatching based on a single
argument (self).

Fundamentally, we want double dispatch: deciding what method to call
based on the Player and Monster arguments.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 17 / 30



Object-Oriented Design

Solving problem 2(a) (avoiding isinstance)

“Dispatch” means “deciding which method to use”.

With classes, we get single dispatch: dispatching based on a single
argument (self).

Fundamentally, we want double dispatch

: deciding what method to call
based on the Player and Monster arguments.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 17 / 30



Object-Oriented Design

Solving problem 2(a) (avoiding isinstance)

“Dispatch” means “deciding which method to use”.

With classes, we get single dispatch: dispatching based on a single
argument (self).

Fundamentally, we want double dispatch: deciding what method to call
based on the Player and Monster arguments.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 17 / 30



Object-Oriented Design

Solving problem 2(a) (avoiding isinstance):

“Visitor pattern”—simulate double dispatch via single dispatch:

class Warrior(Player): # visitor
def attack(self, monster):

return monster.warrior_defend(self) # request visit
class Wizard (Player): # visitor

def attack(self, monster):
return monster. wizard_defend(self) # request visit

class Werewolf(Monster): # visitee
def warrior_defend(self, warrior): ... # accept visit
def wizard_defend(self, wizard): ... # accept visit

class Vampire (Monster): # visitee
def warrior_defend(self, warrior): ... # accept visit
def wizard_defend(self, wizard): ... # accept visit

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 18 / 30



Object-Oriented Design

Solving problem 2(a) (avoiding isinstance):
“Visitor pattern”—simulate double dispatch via single dispatch:

class Warrior(Player): # visitor
def attack(self, monster):

return monster.warrior_defend(self) # request visit
class Wizard (Player): # visitor

def attack(self, monster):
return monster. wizard_defend(self) # request visit

class Werewolf(Monster): # visitee
def warrior_defend(self, warrior): ... # accept visit
def wizard_defend(self, wizard): ... # accept visit

class Vampire (Monster): # visitee
def warrior_defend(self, warrior): ... # accept visit
def wizard_defend(self, wizard): ... # accept visit

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 18 / 30



Object-Oriented Design

Solving problem 2(a) (avoiding isinstance):
“Visitor pattern”—simulate double dispatch via single dispatch:

class Warrior(Player): # visitor
def attack(self, monster):

return monster.warrior_defend(self) # request visit
class Wizard (Player): # visitor

def attack(self, monster):
return monster. wizard_defend(self) # request visit

class Werewolf(Monster): # visitee
def warrior_defend(self, warrior): ... # accept visit
def wizard_defend(self, wizard): ... # accept visit

class Vampire (Monster): # visitee
def warrior_defend(self, warrior): ... # accept visit
def wizard_defend(self, wizard): ... # accept visit

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 18 / 30



Object-Oriented Design

Solving problem 2(a) (avoiding isinstance):
“Visitor pattern”—simulate double dispatch via single dispatch:

class Warrior(Player): # visitor
def attack(self, monster):

return monster.warrior_defend(self) # request visit
class Wizard (Player): # visitor

def attack(self, monster):
return monster. wizard_defend(self) # request visit

class Werewolf(Monster): # visitee
def warrior_defend(self, warrior): ... # accept visit
def wizard_defend(self, wizard): ... # accept visit

class Vampire (Monster): # visitee
def warrior_defend(self, warrior): ... # accept visit
def wizard_defend(self, wizard): ... # accept visit

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 18 / 30



Object-Oriented Design

Visitor pattern solves problem 2(a) (and popular), but bad idea here:

Problem 2(b) still there (symmetry still broken)

Too much code—simple idea, but painful to write

Convoluted/confusing—difficult to reason about

Worst of all: not scalable (and ugly!!!)

What if attack also depended on Location, Weather, etc.?

Visitor pattern for quadruple-dispatch?? Do you seriously want to?!

(P.S.: Even true multiple-dispatch would have its own problems.)

=⇒ Is there a fundamentally different, superior solution?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 19 / 30



Object-Oriented Design

Visitor pattern solves problem 2(a) (and popular), but bad idea here:

Problem 2(b) still there (symmetry still broken)

Too much code—simple idea, but painful to write

Convoluted/confusing—difficult to reason about

Worst of all: not scalable (and ugly!!!)

What if attack also depended on Location, Weather, etc.?

Visitor pattern for quadruple-dispatch?? Do you seriously want to?!

(P.S.: Even true multiple-dispatch would have its own problems.)

=⇒ Is there a fundamentally different, superior solution?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 19 / 30



Object-Oriented Design

Visitor pattern solves problem 2(a) (and popular), but bad idea here:

Problem 2(b) still there (symmetry still broken)

Too much code—simple idea, but painful to write

Convoluted/confusing—difficult to reason about

Worst of all: not scalable (and ugly!!!)

What if attack also depended on Location, Weather, etc.?

Visitor pattern for quadruple-dispatch?? Do you seriously want to?!

(P.S.: Even true multiple-dispatch would have its own problems.)

=⇒ Is there a fundamentally different, superior solution?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 19 / 30



Object-Oriented Design

Visitor pattern solves problem 2(a) (and popular), but bad idea here:

Problem 2(b) still there (symmetry still broken)

Too much code—simple idea, but painful to write

Convoluted/confusing—difficult to reason about

Worst of all: not scalable (and ugly!!!)

What if attack also depended on Location, Weather, etc.?

Visitor pattern for quadruple-dispatch?? Do you seriously want to?!

(P.S.: Even true multiple-dispatch would have its own problems.)

=⇒ Is there a fundamentally different, superior solution?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 19 / 30



Object-Oriented Design

Visitor pattern solves problem 2(a) (and popular), but bad idea here:

Problem 2(b) still there (symmetry still broken)

Too much code—simple idea, but painful to write

Convoluted/confusing—difficult to reason about

Worst of all: not scalable (and ugly!!!)

What if attack also depended on Location, Weather, etc.?

Visitor pattern for quadruple-dispatch?? Do you seriously want to?!

(P.S.: Even true multiple-dispatch would have its own problems.)

=⇒ Is there a fundamentally different, superior solution?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 19 / 30



Object-Oriented Design

Visitor pattern solves problem 2(a) (and popular), but bad idea here:

Problem 2(b) still there (symmetry still broken)

Too much code—simple idea, but painful to write

Convoluted/confusing—difficult to reason about

Worst of all: not scalable (and ugly!!!)

What if attack also depended on Location, Weather, etc.?

Visitor pattern for quadruple-dispatch?? Do you seriously want to?!

(P.S.: Even true multiple-dispatch would have its own problems.)

=⇒ Is there a fundamentally different, superior solution?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 19 / 30



Object-Oriented Design

Visitor pattern solves problem 2(a) (and popular), but bad idea here:

Problem 2(b) still there (symmetry still broken)

Too much code—simple idea, but painful to write

Convoluted/confusing—difficult to reason about

Worst of all: not scalable (and ugly!!!)

What if attack also depended on Location, Weather, etc.?

Visitor pattern for quadruple-dispatch?? Do you seriously want to?!

(P.S.: Even true multiple-dispatch would have its own problems.)

=⇒ Is there a fundamentally different, superior solution?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 19 / 30



Object-Oriented Design

Visitor pattern solves problem 2(a) (and popular), but bad idea here:

Problem 2(b) still there (symmetry still broken)

Too much code—simple idea, but painful to write

Convoluted/confusing—difficult to reason about

Worst of all: not scalable (and ugly!!!)

What if attack also depended on Location, Weather, etc.?

Visitor pattern for quadruple-dispatch?? Do you seriously want to?!

(P.S.: Even true multiple-dispatch would have its own problems.)

=⇒ Is there a fundamentally different, superior solution?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 19 / 30



Object-Oriented Design

Visitor pattern solves problem 2(a) (and popular), but bad idea here:

Problem 2(b) still there (symmetry still broken)

Too much code—simple idea, but painful to write

Convoluted/confusing—difficult to reason about

Worst of all: not scalable (and ugly!!!)

What if attack also depended on Location, Weather, etc.?

Visitor pattern for quadruple-dispatch?? Do you seriously want to?!

(P.S.: Even true multiple-dispatch would have its own problems.)

=⇒ Is there a fundamentally different, superior solution?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 19 / 30



Object-Oriented Design

Visitor pattern solves problem 2(a) (and popular), but bad idea here:

Problem 2(b) still there (symmetry still broken)

Too much code—simple idea, but painful to write

Convoluted/confusing—difficult to reason about

Worst of all: not scalable (and ugly!!!)

What if attack also depended on Location, Weather, etc.?

Visitor pattern for quadruple-dispatch?? Do you seriously want to?!

(P.S.: Even true multiple-dispatch would have its own problems.)

=⇒ Is there a fundamentally different, superior solution?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 19 / 30



Object-Oriented Design

∼ Words of Wisdom #1 ∼

Recognize when you’re fighting your code/framework.
Then stop doing it.

It might be trying to tell you something.

∼ Words of Wisdom #2 ∼

If your design is convoluted, you might be missing a noun.

∼ Words of Wisdom #3 ∼

Elegant solutions often solve multiple problems at once.

Let’s take a step back and re-examine our assumptions & goals.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 20 / 30



Object-Oriented Design

∼ Words of Wisdom #1 ∼

Recognize when you’re fighting your code/framework.
Then stop doing it.

It might be trying to tell you something.

∼ Words of Wisdom #2 ∼

If your design is convoluted, you might be missing a noun.

∼ Words of Wisdom #3 ∼

Elegant solutions often solve multiple problems at once.

Let’s take a step back and re-examine our assumptions & goals.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 20 / 30



Object-Oriented Design

∼ Words of Wisdom #1 ∼

Recognize when you’re fighting your code/framework.
Then stop doing it.

It might be trying to tell you something.

∼ Words of Wisdom #2 ∼

If your design is convoluted, you might be missing a noun.

∼ Words of Wisdom #3 ∼

Elegant solutions often solve multiple problems at once.

Let’s take a step back and re-examine our assumptions & goals.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 20 / 30



Object-Oriented Design

∼ Words of Wisdom #1 ∼

Recognize when you’re fighting your code/framework.
Then stop doing it.

It might be trying to tell you something.

∼ Words of Wisdom #2 ∼

If your design is convoluted, you might be missing a noun.

∼ Words of Wisdom #3 ∼

Elegant solutions often solve multiple problems at once.

Let’s take a step back and re-examine our assumptions & goals.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 20 / 30



Object-Oriented Design

∼ Words of Wisdom #1 ∼

Recognize when you’re fighting your code/framework.
Then stop doing it.

It might be trying to tell you something.

∼ Words of Wisdom #2 ∼

If your design is convoluted, you might be missing a noun.

∼ Words of Wisdom #3 ∼

Elegant solutions often solve multiple problems at once.

Let’s take a step back and re-examine our assumptions & goals.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 20 / 30



Object-Oriented Design

∼ Words of Wisdom #1 ∼

Recognize when you’re fighting your code/framework.
Then stop doing it.

It might be trying to tell you something.

∼ Words of Wisdom #2 ∼

If your design is convoluted, you might be missing a noun.

∼ Words of Wisdom #3 ∼

Elegant solutions often solve multiple problems at once.

Let’s take a step back and re-examine our assumptions & goals.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 20 / 30



Object-Oriented Design

∼ Words of Wisdom #1 ∼

Recognize when you’re fighting your code/framework.
Then stop doing it.

It might be trying to tell you something.

∼ Words of Wisdom #2 ∼

If your design is convoluted, you might be missing a noun.

∼ Words of Wisdom #3 ∼

Elegant solutions often solve multiple problems at once.

Let’s take a step back and re-examine our assumptions & goals.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 20 / 30



Object-Oriented Design

∼ Words of Wisdom #1 ∼

Recognize when you’re fighting your code/framework.
Then stop doing it.

It might be trying to tell you something.

∼ Words of Wisdom #2 ∼

If your design is convoluted, you might be missing a noun.

∼ Words of Wisdom #3 ∼

Elegant solutions often solve multiple problems at once.

Let’s take a step back and re-examine our assumptions & goals.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 20 / 30



Object-Oriented Design

Objective:

Code should be “DRY”: Don’t Repeat Yourself

More generally: code should be easy to read, write, and maintain

Constraints and logic should be expressed in code somehow

Assumptions:
1 OOP is a solution
2 Represent every “entity” (noun) with a class: player, monster, etc.
3 Represent every “behavior” (verb) with a method

Maybe we made poor assumptions?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 21 / 30



Object-Oriented Design

Objective:

Code should be “DRY”: Don’t Repeat Yourself

More generally: code should be easy to read, write, and maintain

Constraints and logic should be expressed in code somehow

Assumptions:
1 OOP is a solution
2 Represent every “entity” (noun) with a class: player, monster, etc.
3 Represent every “behavior” (verb) with a method

Maybe we made poor assumptions?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 21 / 30



Object-Oriented Design

Objective:

Code should be “DRY”: Don’t Repeat Yourself

More generally: code should be easy to read, write, and maintain

Constraints and logic should be expressed in code somehow

Assumptions:
1 OOP is a solution
2 Represent every “entity” (noun) with a class: player, monster, etc.
3 Represent every “behavior” (verb) with a method

Maybe we made poor assumptions?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 21 / 30



Object-Oriented Design

Objective:

Code should be “DRY”: Don’t Repeat Yourself

More generally: code should be easy to read, write, and maintain

Constraints and logic should be expressed in code somehow

Assumptions:
1 OOP is a solution
2 Represent every “entity” (noun) with a class: player, monster, etc.
3 Represent every “behavior” (verb) with a method

Maybe we made poor assumptions?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 21 / 30



Object-Oriented Design

Objective:

Code should be “DRY”: Don’t Repeat Yourself

More generally: code should be easy to read, write, and maintain

Constraints and logic should be expressed in code somehow

Assumptions:
1 OOP is a solution
2 Represent every “entity” (noun) with a class: player, monster, etc.
3 Represent every “behavior” (verb) with a method

Maybe we made poor assumptions?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 21 / 30



Object-Oriented Design

Objective:

Code should be “DRY”: Don’t Repeat Yourself

More generally: code should be easy to read, write, and maintain

Constraints and logic should be expressed in code somehow

Assumptions:

1 OOP is a solution
2 Represent every “entity” (noun) with a class: player, monster, etc.
3 Represent every “behavior” (verb) with a method

Maybe we made poor assumptions?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 21 / 30



Object-Oriented Design

Objective:

Code should be “DRY”: Don’t Repeat Yourself

More generally: code should be easy to read, write, and maintain

Constraints and logic should be expressed in code somehow

Assumptions:
1 OOP is a solution

2 Represent every “entity” (noun) with a class: player, monster, etc.
3 Represent every “behavior” (verb) with a method

Maybe we made poor assumptions?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 21 / 30



Object-Oriented Design

Objective:

Code should be “DRY”: Don’t Repeat Yourself

More generally: code should be easy to read, write, and maintain

Constraints and logic should be expressed in code somehow

Assumptions:
1 OOP is a solution
2 Represent every “entity” (noun) with a class: player, monster, etc.

3 Represent every “behavior” (verb) with a method

Maybe we made poor assumptions?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 21 / 30



Object-Oriented Design

Objective:

Code should be “DRY”: Don’t Repeat Yourself

More generally: code should be easy to read, write, and maintain

Constraints and logic should be expressed in code somehow

Assumptions:
1 OOP is a solution
2 Represent every “entity” (noun) with a class: player, monster, etc.
3 Represent every “behavior” (verb) with a method

Maybe we made poor assumptions?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 21 / 30



Object-Oriented Design

Objective:

Code should be “DRY”: Don’t Repeat Yourself

More generally: code should be easy to read, write, and maintain

Constraints and logic should be expressed in code somehow

Assumptions:
1 OOP is a solution
2 Represent every “entity” (noun) with a class: player, monster, etc.
3 Represent every “behavior” (verb) with a method

Maybe we made poor assumptions?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 21 / 30



Object-Oriented Design

Solution:

We’re missing a very fundamental class. Any ideas?

=⇒ We need a “Rule” class.

In fact, our class hierarchy completely missed our program’s objective,
which was to maintain state consistency against modification attempts.

Instead of coding blindly, we should’ve started with our real concerns:

Users provide sequences of commands...

...to be evaluated in the context of rules and current game state...

...to produce effects.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 22 / 30



Object-Oriented Design

Solution: We’re missing a very fundamental class.

Any ideas?

=⇒ We need a “Rule” class.

In fact, our class hierarchy completely missed our program’s objective,
which was to maintain state consistency against modification attempts.

Instead of coding blindly, we should’ve started with our real concerns:

Users provide sequences of commands...

...to be evaluated in the context of rules and current game state...

...to produce effects.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 22 / 30



Object-Oriented Design

Solution: We’re missing a very fundamental class. Any ideas?

=⇒ We need a “Rule” class.

In fact, our class hierarchy completely missed our program’s objective,
which was to maintain state consistency against modification attempts.

Instead of coding blindly, we should’ve started with our real concerns:

Users provide sequences of commands...

...to be evaluated in the context of rules and current game state...

...to produce effects.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 22 / 30



Object-Oriented Design

Solution: We’re missing a very fundamental class. Any ideas?

=⇒ We need a “Rule” class.

In fact, our class hierarchy completely missed our program’s objective,
which was to maintain state consistency against modification attempts.

Instead of coding blindly, we should’ve started with our real concerns:

Users provide sequences of commands...

...to be evaluated in the context of rules and current game state...

...to produce effects.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 22 / 30



Object-Oriented Design

Solution: We’re missing a very fundamental class. Any ideas?

=⇒ We need a “Rule” class.

In fact, our class hierarchy completely missed our program’s objective,
which was to maintain state consistency against modification attempts.

Instead of coding blindly, we should’ve started with our real concerns:

Users provide sequences of commands...

...to be evaluated in the context of rules and current game state...

...to produce effects.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 22 / 30



Object-Oriented Design

Solution: We’re missing a very fundamental class. Any ideas?

=⇒ We need a “Rule” class.

In fact, our class hierarchy completely missed our program’s objective,
which was to maintain state consistency against modification attempts.

Instead of coding blindly, we should’ve started with our real concerns:

Users provide sequences of commands...

...to be evaluated in the context of rules and current game state...

...to produce effects.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 22 / 30



Object-Oriented Design

Solution: We’re missing a very fundamental class. Any ideas?

=⇒ We need a “Rule” class.

In fact, our class hierarchy completely missed our program’s objective,
which was to maintain state consistency against modification attempts.

Instead of coding blindly, we should’ve started with our real concerns:

Users provide sequences of commands...

...to be evaluated in the context of rules and current game state...

...to produce effects.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 22 / 30



Object-Oriented Design

Solution: We’re missing a very fundamental class. Any ideas?

=⇒ We need a “Rule” class.

In fact, our class hierarchy completely missed our program’s objective,
which was to maintain state consistency against modification attempts.

Instead of coding blindly, we should’ve started with our real concerns:

Users provide sequences of commands...

...to be evaluated in the context of rules and current game state...

...to produce effects.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 22 / 30



Object-Oriented Design

Solution: We’re missing a very fundamental class. Any ideas?

=⇒ We need a “Rule” class.

In fact, our class hierarchy completely missed our program’s objective,
which was to maintain state consistency against modification attempts.

Instead of coding blindly, we should’ve started with our real concerns:

Users provide sequences of commands...

...to be evaluated in the context of rules and current game state...

...to produce effects.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 22 / 30



Object-Oriented Design

What do we know about effects?

Effects include doing nothing (no-op, or “nop”)

Effects include mutating game state

Effects include playing audio, video, ...

Effects include combinations of other effects

What do we know about rules?

Rules can determine effects based on the player, action, etc.

Rules can be invariants: conditions that must never be violated

Rules can determine “default” command behavior

Rules can affect (weaken/strengthen/override/etc.) other rules

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 23 / 30



Object-Oriented Design

What do we know about effects?

Effects include doing nothing (no-op, or “nop”)

Effects include mutating game state

Effects include playing audio, video, ...

Effects include combinations of other effects

What do we know about rules?

Rules can determine effects based on the player, action, etc.

Rules can be invariants: conditions that must never be violated

Rules can determine “default” command behavior

Rules can affect (weaken/strengthen/override/etc.) other rules

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 23 / 30



Object-Oriented Design

What do we know about effects?

Effects include doing nothing (no-op, or “nop”)

Effects include mutating game state

Effects include playing audio, video, ...

Effects include combinations of other effects

What do we know about rules?

Rules can determine effects based on the player, action, etc.

Rules can be invariants: conditions that must never be violated

Rules can determine “default” command behavior

Rules can affect (weaken/strengthen/override/etc.) other rules

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 23 / 30



Object-Oriented Design

What do we know about effects?

Effects include doing nothing (no-op, or “nop”)

Effects include mutating game state

Effects include playing audio, video, ...

Effects include combinations of other effects

What do we know about rules?

Rules can determine effects based on the player, action, etc.

Rules can be invariants: conditions that must never be violated

Rules can determine “default” command behavior

Rules can affect (weaken/strengthen/override/etc.) other rules

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 23 / 30



Object-Oriented Design

What do we know about effects?

Effects include doing nothing (no-op, or “nop”)

Effects include mutating game state

Effects include playing audio, video, ...

Effects include combinations of other effects

What do we know about rules?

Rules can determine effects based on the player, action, etc.

Rules can be invariants: conditions that must never be violated

Rules can determine “default” command behavior

Rules can affect (weaken/strengthen/override/etc.) other rules

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 23 / 30



Object-Oriented Design

What do we know about effects?

Effects include doing nothing (no-op, or “nop”)

Effects include mutating game state

Effects include playing audio, video, ...

Effects include combinations of other effects

What do we know about rules?

Rules can determine effects based on the player, action, etc.

Rules can be invariants: conditions that must never be violated

Rules can determine “default” command behavior

Rules can affect (weaken/strengthen/override/etc.) other rules

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 23 / 30



Object-Oriented Design

What do we know about effects?

Effects include doing nothing (no-op, or “nop”)

Effects include mutating game state

Effects include playing audio, video, ...

Effects include combinations of other effects

What do we know about rules?

Rules can determine effects based on the player, action, etc.

Rules can be invariants: conditions that must never be violated

Rules can determine “default” command behavior

Rules can affect (weaken/strengthen/override/etc.) other rules

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 23 / 30



Object-Oriented Design

What do we know about effects?

Effects include doing nothing (no-op, or “nop”)

Effects include mutating game state

Effects include playing audio, video, ...

Effects include combinations of other effects

What do we know about rules?

Rules can determine effects based on the player, action, etc.

Rules can be invariants: conditions that must never be violated

Rules can determine “default” command behavior

Rules can affect (weaken/strengthen/override/etc.) other rules

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 23 / 30



Object-Oriented Design

What do we know about effects?

Effects include doing nothing (no-op, or “nop”)

Effects include mutating game state

Effects include playing audio, video, ...

Effects include combinations of other effects

What do we know about rules?

Rules can determine effects based on the player, action, etc.

Rules can be invariants: conditions that must never be violated

Rules can determine “default” command behavior

Rules can affect (weaken/strengthen/override/etc.) other rules

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 23 / 30



Object-Oriented Design

What do we know about effects?

Effects include doing nothing (no-op, or “nop”)

Effects include mutating game state

Effects include playing audio, video, ...

Effects include combinations of other effects

What do we know about rules?

Rules can determine effects based on the player, action, etc.

Rules can be invariants: conditions that must never be violated

Rules can determine “default” command behavior

Rules can affect (weaken/strengthen/override/etc.) other rules

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 23 / 30



Object-Oriented Design

What do we know about effects?

Effects include doing nothing (no-op, or “nop”)

Effects include mutating game state

Effects include playing audio, video, ...

Effects include combinations of other effects

What do we know about rules?

Rules can determine effects based on the player, action, etc.

Rules can be invariants: conditions that must never be violated

Rules can determine “default” command behavior

Rules can affect (weaken/strengthen/override/etc.) other rules

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 23 / 30



Object-Oriented Design

Previous problems no longer exist:

Players possess weapons? OK, make Player class with weapon field.
Nothing else—that’s all. Player’s only job is to maintain its state.

Make a Command called Wield that holds a Player and a Weapon.
Evaluate Commands in the context of Rules, producing Effects.

Make Rules for evaluating different Commands, like Wield.
These would modify any produced Effects as desired.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 24 / 30



Object-Oriented Design

Previous problems no longer exist:

Players possess weapons? OK, make Player class with weapon field.
Nothing else—that’s all. Player’s only job is to maintain its state.

Make a Command called Wield that holds a Player and a Weapon.
Evaluate Commands in the context of Rules, producing Effects.

Make Rules for evaluating different Commands, like Wield.
These would modify any produced Effects as desired.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 24 / 30



Object-Oriented Design

Previous problems no longer exist:

Players possess weapons? OK, make Player class with weapon field.
Nothing else—that’s all. Player’s only job is to maintain its state.

Make a Command called Wield that holds a Player and a Weapon.
Evaluate Commands in the context of Rules, producing Effects.

Make Rules for evaluating different Commands, like Wield.
These would modify any produced Effects as desired.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 24 / 30



Object-Oriented Design

Previous problems no longer exist:

Players possess weapons? OK, make Player class with weapon field.
Nothing else—that’s all. Player’s only job is to maintain its state.

Make a Command called Wield that holds a Player and a Weapon.
Evaluate Commands in the context of Rules, producing Effects.

Make Rules for evaluating different Commands, like Wield.
These would modify any produced Effects as desired.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 24 / 30



Object-Oriented Design

Previous problems no longer exist:

Players possess weapons? OK, make Player class with weapon field.
Nothing else—that’s all. Player’s only job is to maintain its state.

Make a Command called Wield that holds a Player and a Weapon.
Evaluate Commands in the context of Rules, producing Effects.

Make Rules for evaluating different Commands, like Wield.
These would modify any produced Effects as desired.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 24 / 30



Object-Oriented Design

What problems have we solved?

Arbitrary choices are no longer made

Location of rule in code is obvious and unique

No more LSP violations and ticking time bombs

Solution is scalable to more sophisticated rules

Bonus: separating out Rules actually solves more problems!

We can put rules into a database and pass them around if needed

We can write engines to test rules in different orders, for validation

We can write rules in a simpler domain-specific language (DSL)
No more need to know codebase—or to even be a programmer!

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 25 / 30



Object-Oriented Design

What problems have we solved?

Arbitrary choices are no longer made

Location of rule in code is obvious and unique

No more LSP violations and ticking time bombs

Solution is scalable to more sophisticated rules

Bonus: separating out Rules actually solves more problems!

We can put rules into a database and pass them around if needed

We can write engines to test rules in different orders, for validation

We can write rules in a simpler domain-specific language (DSL)
No more need to know codebase—or to even be a programmer!

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 25 / 30



Object-Oriented Design

What problems have we solved?

Arbitrary choices are no longer made

Location of rule in code is obvious and unique

No more LSP violations and ticking time bombs

Solution is scalable to more sophisticated rules

Bonus: separating out Rules actually solves more problems!

We can put rules into a database and pass them around if needed

We can write engines to test rules in different orders, for validation

We can write rules in a simpler domain-specific language (DSL)
No more need to know codebase—or to even be a programmer!

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 25 / 30



Object-Oriented Design

What problems have we solved?

Arbitrary choices are no longer made

Location of rule in code is obvious and unique

No more LSP violations and ticking time bombs

Solution is scalable to more sophisticated rules

Bonus: separating out Rules actually solves more problems!

We can put rules into a database and pass them around if needed

We can write engines to test rules in different orders, for validation

We can write rules in a simpler domain-specific language (DSL)
No more need to know codebase—or to even be a programmer!

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 25 / 30



Object-Oriented Design

What problems have we solved?

Arbitrary choices are no longer made

Location of rule in code is obvious and unique

No more LSP violations and ticking time bombs

Solution is scalable to more sophisticated rules

Bonus: separating out Rules actually solves more problems!

We can put rules into a database and pass them around if needed

We can write engines to test rules in different orders, for validation

We can write rules in a simpler domain-specific language (DSL)
No more need to know codebase—or to even be a programmer!

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 25 / 30



Object-Oriented Design

What problems have we solved?

Arbitrary choices are no longer made

Location of rule in code is obvious and unique

No more LSP violations and ticking time bombs

Solution is scalable to more sophisticated rules

Bonus: separating out Rules actually solves more problems!

We can put rules into a database and pass them around if needed

We can write engines to test rules in different orders, for validation

We can write rules in a simpler domain-specific language (DSL)
No more need to know codebase—or to even be a programmer!

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 25 / 30



Object-Oriented Design

What problems have we solved?

Arbitrary choices are no longer made

Location of rule in code is obvious and unique

No more LSP violations and ticking time bombs

Solution is scalable to more sophisticated rules

Bonus: separating out Rules actually solves more problems!

We can put rules into a database and pass them around if needed

We can write engines to test rules in different orders, for validation

We can write rules in a simpler domain-specific language (DSL)
No more need to know codebase—or to even be a programmer!

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 25 / 30



Object-Oriented Design

What problems have we solved?

Arbitrary choices are no longer made

Location of rule in code is obvious and unique

No more LSP violations and ticking time bombs

Solution is scalable to more sophisticated rules

Bonus: separating out Rules actually solves more problems!

We can put rules into a database and pass them around if needed

We can write engines to test rules in different orders, for validation

We can write rules in a simpler domain-specific language (DSL)
No more need to know codebase—or to even be a programmer!

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 25 / 30



Object-Oriented Design

What problems have we solved?

Arbitrary choices are no longer made

Location of rule in code is obvious and unique

No more LSP violations and ticking time bombs

Solution is scalable to more sophisticated rules

Bonus: separating out Rules actually solves more problems!

We can put rules into a database and pass them around if needed

We can write engines to test rules in different orders, for validation

We can write rules in a simpler domain-specific language (DSL)
No more need to know codebase—or to even be a programmer!

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 25 / 30



Object-Oriented Design

What problems have we solved?

Arbitrary choices are no longer made

Location of rule in code is obvious and unique

No more LSP violations and ticking time bombs

Solution is scalable to more sophisticated rules

Bonus: separating out Rules actually solves more problems!

We can put rules into a database and pass them around if needed

We can write engines to test rules in different orders, for validation

We can write rules in a simpler domain-specific language (DSL)
No more need to know codebase—or to even be a programmer!

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 25 / 30



Object-Oriented Design

What just happened?

We explicitly represented our code as data (Rule, Effect, ...)

We made our design more flexible and scalable

We made our design more elegant

We made our design easier to understand and maintain

How did we achieve this? By not coding blindly.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 26 / 30



Object-Oriented Design

What just happened?

We explicitly represented our code as data (Rule, Effect, ...)

We made our design more flexible and scalable

We made our design more elegant

We made our design easier to understand and maintain

How did we achieve this? By not coding blindly.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 26 / 30



Object-Oriented Design

What just happened?

We explicitly represented our code as data (Rule, Effect, ...)

We made our design more flexible and scalable

We made our design more elegant

We made our design easier to understand and maintain

How did we achieve this? By not coding blindly.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 26 / 30



Object-Oriented Design

What just happened?

We explicitly represented our code as data (Rule, Effect, ...)

We made our design more flexible and scalable

We made our design more elegant

We made our design easier to understand and maintain

How did we achieve this? By not coding blindly.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 26 / 30



Object-Oriented Design

What just happened?

We explicitly represented our code as data (Rule, Effect, ...)

We made our design more flexible and scalable

We made our design more elegant

We made our design easier to understand and maintain

How did we achieve this? By not coding blindly.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 26 / 30



Object-Oriented Design

What just happened?

We explicitly represented our code as data (Rule, Effect, ...)

We made our design more flexible and scalable

We made our design more elegant

We made our design easier to understand and maintain

How did we achieve this? By not coding blindly.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 26 / 30



Object-Oriented Design

What just happened?

We explicitly represented our code as data (Rule, Effect, ...)

We made our design more flexible and scalable

We made our design more elegant

We made our design easier to understand and maintain

How did we achieve this?

By not coding blindly.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 26 / 30



Object-Oriented Design

What just happened?

We explicitly represented our code as data (Rule, Effect, ...)

We made our design more flexible and scalable

We made our design more elegant

We made our design easier to understand and maintain

How did we achieve this? By not coding blindly.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 26 / 30



Object-Oriented Design

Takeaways:

Think before you code.

Design choices have far-reaching ramifications on an entire project.

Constantly watch out for code smells and unnecessary oddities.

Software engineering can require genuine thinking and insight.
Take it seriously. Don’t naively assume it’s “beneath” you as a
theorist or systems programmer (or whatever).

Fundamentally poor decisions may not make themselves obvious.
If you don’t actively re-evaluate your design decisions, you may never
notice problems.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 27 / 30



Object-Oriented Design

Takeaways:

Think before you code.

Design choices have far-reaching ramifications on an entire project.

Constantly watch out for code smells and unnecessary oddities.

Software engineering can require genuine thinking and insight.
Take it seriously. Don’t naively assume it’s “beneath” you as a
theorist or systems programmer (or whatever).

Fundamentally poor decisions may not make themselves obvious.
If you don’t actively re-evaluate your design decisions, you may never
notice problems.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 27 / 30



Object-Oriented Design

Takeaways:

Think before you code.

Design choices have far-reaching ramifications on an entire project.

Constantly watch out for code smells and unnecessary oddities.

Software engineering can require genuine thinking and insight.
Take it seriously. Don’t naively assume it’s “beneath” you as a
theorist or systems programmer (or whatever).

Fundamentally poor decisions may not make themselves obvious.
If you don’t actively re-evaluate your design decisions, you may never
notice problems.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 27 / 30



Object-Oriented Design

Takeaways:

Think before you code.

Design choices have far-reaching ramifications on an entire project.

Constantly watch out for code smells and unnecessary oddities.

Software engineering can require genuine thinking and insight.
Take it seriously. Don’t naively assume it’s “beneath” you as a
theorist or systems programmer (or whatever).

Fundamentally poor decisions may not make themselves obvious.
If you don’t actively re-evaluate your design decisions, you may never
notice problems.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 27 / 30



Object-Oriented Design

Takeaways:

Think before you code.

Design choices have far-reaching ramifications on an entire project.

Constantly watch out for code smells and unnecessary oddities.

Software engineering can require genuine thinking and insight.
Take it seriously. Don’t naively assume it’s “beneath” you as a
theorist or systems programmer (or whatever).

Fundamentally poor decisions may not make themselves obvious.
If you don’t actively re-evaluate your design decisions, you may never
notice problems.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 27 / 30



Object-Oriented Design

Takeaways:

Think before you code.

Design choices have far-reaching ramifications on an entire project.

Constantly watch out for code smells and unnecessary oddities.

Software engineering can require genuine thinking and insight.
Take it seriously. Don’t naively assume it’s “beneath” you as a
theorist or systems programmer (or whatever).

Fundamentally poor decisions may not make themselves obvious.
If you don’t actively re-evaluate your design decisions, you may never
notice problems.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 27 / 30



Object-Oriented Design

Takeaways:

Think before you code.

Design choices have far-reaching ramifications on an entire project.

Constantly watch out for code smells and unnecessary oddities.

Software engineering can require genuine thinking and insight.
Take it seriously. Don’t naively assume it’s “beneath” you as a
theorist or systems programmer (or whatever).

Fundamentally poor decisions may not make themselves obvious.
If you don’t actively re-evaluate your design decisions, you may never
notice problems.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 27 / 30



Object-Oriented Design

Another, simpler scenario: how would you code breadth-first-search?

Probably similarly to this:

def breadth_first_search(v):
i = 0
queue = [v]
while i < len(queue):

v = queue[i]
i += 1
queue.extend(v.children)
yield v

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 28 / 30



Object-Oriented Design

Another, simpler scenario: how would you code breadth-first-search?

Probably similarly to this:

def breadth_first_search(v):
i = 0
queue = [v]
while i < len(queue):

v = queue[i]
i += 1
queue.extend(v.children)
yield v

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 28 / 30



Object-Oriented Design

Another, simpler scenario: how would you code breadth-first-search?

Probably similarly to this:

def breadth_first_search(v):
i = 0
queue = [v]
while i < len(queue):

v = queue[i]
i += 1
queue.extend(v.children)
yield v

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 28 / 30



Object-Oriented Design

Another, simpler scenario: how would you code breadth-first-search?

Probably similarly to this:

def breadth_first_search(v):
i = 0
queue = [v]
while i < len(queue):

v = queue[i]
i += 1
queue.extend(v.children)
yield v

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 28 / 30



Object-Oriented Design

Let’s make it a class instead:

class BreadthFirstSearcher(object):
def __init__(self, v):

(self.i, self.queue) = (0, [v])
def next(self):

while self.i < len(self.queue):
v = self.queue[self.i]
self.i += 1
self.queue.extend(v.children)
return v

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 29 / 30



Object-Oriented Design

Let’s make it a class instead:

class BreadthFirstSearcher(object):
def __init__(self, v):

(self.i, self.queue) = (0, [v])
def next(self):

while self.i < len(self.queue):
v = self.queue[self.i]
self.i += 1
self.queue.extend(v.children)
return v

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 29 / 30



Object-Oriented Design

Let’s make it a class instead:

class BreadthFirstSearcher(object):
def __init__(self, v):

(self.i, self.queue) = (0, [v])
def next(self):

while self.i < len(self.queue):
v = self.queue[self.i]
self.i += 1
self.queue.extend(v.children)
return v

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 29 / 30



Object-Oriented Design

Let’s make it a class instead!

Why make a whole class for BFS?? Does anybody do this?!

Well, maybe because we can now very easily:

Inspect the queue while iterating

Modify the queue if desired

Save and restore the iterator state

Copy/fork the iterator mid-way and continue it on multiple graphs

Note that making BreadthFirstSearcher a class is not obvious!

Realizing this solution takes some thinking... and pays dividends.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 30 / 30



Object-Oriented Design

Let’s make it a class instead!

Why make a whole class for BFS?? Does anybody do this?!

Well, maybe because we can now very easily:

Inspect the queue while iterating

Modify the queue if desired

Save and restore the iterator state

Copy/fork the iterator mid-way and continue it on multiple graphs

Note that making BreadthFirstSearcher a class is not obvious!

Realizing this solution takes some thinking... and pays dividends.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 30 / 30



Object-Oriented Design

Let’s make it a class instead!

Why make a whole class for BFS?? Does anybody do this?!

Well, maybe because we can now very easily:

Inspect the queue while iterating

Modify the queue if desired

Save and restore the iterator state

Copy/fork the iterator mid-way and continue it on multiple graphs

Note that making BreadthFirstSearcher a class is not obvious!

Realizing this solution takes some thinking... and pays dividends.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 30 / 30



Object-Oriented Design

Let’s make it a class instead!

Why make a whole class for BFS?? Does anybody do this?!

Well, maybe because we can now very easily:

Inspect the queue while iterating

Modify the queue if desired

Save and restore the iterator state

Copy/fork the iterator mid-way and continue it on multiple graphs

Note that making BreadthFirstSearcher a class is not obvious!

Realizing this solution takes some thinking... and pays dividends.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 30 / 30



Object-Oriented Design

Let’s make it a class instead!

Why make a whole class for BFS?? Does anybody do this?!

Well, maybe because we can now very easily:

Inspect the queue while iterating

Modify the queue if desired

Save and restore the iterator state

Copy/fork the iterator mid-way and continue it on multiple graphs

Note that making BreadthFirstSearcher a class is not obvious!

Realizing this solution takes some thinking... and pays dividends.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 30 / 30



Object-Oriented Design

Let’s make it a class instead!

Why make a whole class for BFS?? Does anybody do this?!

Well, maybe because we can now very easily:

Inspect the queue while iterating

Modify the queue if desired

Save and restore the iterator state

Copy/fork the iterator mid-way and continue it on multiple graphs

Note that making BreadthFirstSearcher a class is not obvious!

Realizing this solution takes some thinking... and pays dividends.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 30 / 30



Object-Oriented Design

Let’s make it a class instead!

Why make a whole class for BFS?? Does anybody do this?!

Well, maybe because we can now very easily:

Inspect the queue while iterating

Modify the queue if desired

Save and restore the iterator state

Copy/fork the iterator mid-way and continue it on multiple graphs

Note that making BreadthFirstSearcher a class is not obvious!

Realizing this solution takes some thinking... and pays dividends.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 30 / 30


	Preliminaries
	Scenario
	Problem 1
	Problem 2
	Solution
	Conclusion
	Addendum


