
CS 61A/CS 98-52

Mehrdad Niknami

University of California, Berkeley

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 1 / 25

Preliminaries

Today, we’re going to learn how to add & multiply. Exciting!

Let’s add two positive n-bit integers (n = 8 here):

Carry: 1 111111
Augend: 10110111
Addend: + 10011101

Sum: 101010100

This is called ripple-carry addition. Some questions:
1 How big can the sum be (at most)? What is the worst case?
2 How long does summation take in the worst case? Why?

...we’ll come back to this!

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 2 / 25

History

First computer design (difference engine) in 1822 (!!) and later, the
analytical engine, by Charles Babbage (1791-1871)

First description of “MIMD” parallelism in 1842 (!!!) in Sketch of The
Analytical Engine Invented by Charles Babbage, by Luigi F. Menabrea

First theory of computation by Alan Turing in 1936

First electronic analog computer created in 1942 for bombing in WWII

First electronic digital computer created in 1943
⇒ Electronic Numerical Integrator and Computer (ENIAC)

First description of parallel programs in 1958 (Stanley Gill)

First multiprocessor system (Multics) in 1969

Lots of parallel computing research starting in 1970s... then faded away

Multi-core systems reinvigorated parallel computing around 2001
Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 3 / 25

History

Long story short...

Parallel computing goes back longer than you think

Lots of useful research from the 1900s finding life again
since processors stopped getting faster

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 4 / 25

Terminology

Some basic terminology:

Process: A running program
Processes cannot access each others’ memory by default

Thread: A unit of program flow
(N threads = n independent executions of code)
Threads maintain their own execution contexts in a given process

Thread context: All the information a thread needs to run code
This includes the location of the code that it is currently being
executing, as well as its current stack frame (local variables, etc.)

Concurrency: Overlapping operations (X begins before Y ends)

Parallelism: Simultaneously-occurring operations (multiple
operations happening at the same time)

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 5 / 25

Terminology

Parallel operations are always concurrent by definition

Concurrent operations need not be in parallel (open door, open window,
close door, close window)

Parallelism gives you a speed boost (multiple operations at the same
time), but requires N processors for N× speedup

Concurrency allows you to avoid stopping one thing before starting
another, and can occur on a single processor

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 6 / 25

Concepts

Distributed computation (running on multiple machines) is more difficult:

Needs fault-tolerance (more machines = higher failure probability)

Lack of shared memory

More limited communication bandwidth (network slower than RAM)

Time becomes problematic to handle

Rich literature, e.g. actor-based models of computation (MoC) such as
discrete-event, synchronous-reactive, synchronous dataflow, etc. for
analyzing/designing systems with guaranteed performance or reliability

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 7 / 25

Threading

Threading example:

import threading
t = threading.Thread(target=print, args=('a',))
t.start()
print('b') # may print 'b' before or after 'a'
t.join() # wait for t to finish

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 8 / 25

https://en.wikipedia.org/wiki/Difference_engine
https://en.wikipedia.org/wiki/Analytical_engine

Threading

Race condition: When a thread attempts to access something being
modified by another thread. Race conditions are generally bad.

Example:

import threading
lst = [0]
def f():

lst[0] += 1 # write 1 might occur after read 2
t = threading.Thread(target=f)
t.start()
f()
t.join()
assert lst[0] in [1, 2] # could be any of these!

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 9 / 25

Concurrency Control

Mutex (Lock in Python): Object that can prevent concurrent access
(mutual-exclusion). Example:

import threading
lock = threading.Lock()
lst = [0]
def f():

lock.acquire() # waits for mutex to be available
lst[0] += 1 # only one thread may run this code
lock.release() # makes mutex available to others

t = threading.Thread(target=f)
t.start()
f()
t.join()
assert lst[0] in [2] # will always succeed

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 10 / 25

Concurrency Control

Sadly, in CPython, multithreaded operations cannot occur in parallel,
because there is a “global interpreter lock” (GIL).
Therefore, Python code cannot be sped up in CPython.1

To obtain parallelism in CPython, you can use multiprocessing :
running another copy of the program and communicating with it.

Jython, IronPython, etc. can run Python in parallel, and most other
languages support parallelism as well.

1However, Python code can release GIL when calling non-Python code.
Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 11 / 25

Inter-Thread and Inter-Process Communication (IPC)

Threads/processes need to communicate. Common techniques:
Shared memory: mutating shared objects (if all on 1 machine)

Pros: Reduces copying of data (faster/less memory)

Cons: Must block execution until lock is acquired (slow)

Message-passing: sending data through thread-safe queues
Pros: Queue can buffer & work asynchronously (faster)

Cons: Increases need to copy data (slower/more memory)

Pipes: synchronous version of message-passing (“rendezvous”)

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 12 / 25

Inter-Thread and Inter-Process Communication (IPC)

Message-passing example for parallelizing f (x) = x2:

from multiprocessing import Process, Queue
def f(q_in, q_out):

while True:
x = q_in.get()
if x is None: break
q_out.put(x ** 2) # real work

if __name__ == '__main__': # only on main thread
qs = (Queue(), Queue())
procs = [Process(target=f, args=qs) for _ in range(4)]
for proc in procs: proc.start()
for i in range(10): qs[0].put(i) # send inputs
for i in range(10): print(qs[1].get()) # receive outputs
for proc in procs: qs[0].put(None) # notify finished
for proc in procs: proc.join()

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 13 / 25

Addition

Common parallelism technique: divide-and-conquer
1 Divide problem into separate subproblems
2 Solve subproblems in parallel
3 Merge sub-results into main result

XOR (and AND, and OR) are easy to parallelize:
1 Split each n-bit number into p pieces
2 XOR each n/p-bit pair of numbers independently
3 Put back the bits together

Can we do something similar with addition?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 14 / 25

Addition

Let’s go back to addition.

We have two n-bit numbers to add.

What if we take the same approach for + as for XOR?
1 Split each n-bit number into p pieces
2 Add each n/p-bit pair of numbers independently
3 Put back the bits together
4 ...
5 Profit? No? What’s wrong?

We need to propagate carries! How long does it take? Θ(n) time

(How) can we do better?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 15 / 25

Addition

Key idea #1: A carry can be either 0 or 1... and we add different
pieces in parallel... and then select the correct one based on carry!
⇒ This is called a carry-select adder.

Key idea #2: We can do this recursively.
⇒ This is called a conditional-sum adder.

How fast is a conditional-sum adder?

Running time is proportional to maximum propagation depth

We solve two problems of half the size simultaneously

We combine solutions with constant extra work

Therefore, parallel running time is Θ(log n)

However, we do more work: T (n) = 2T
(
n/2

)
+ c = Θ(n log n)

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 16 / 25

Addition

Other algorithms also exist with different trade-offs:

Carry-skip adder

Carry-lookahead adder (CLA)

Kogge–Stone adder (“parallel-prefix” CLA; widely used)

Brent-Kung adder

Han–Carlson adder

Lynch–Swartzlander spanning tree adder (fastest?)

...I don’t know them. But Θ(log n) is already asymptotically optimal. :-)

Some algorithms are better suited for hardware due to lower “fan-out”:
e.g. 1 bit is too “weak” to drive 16 bits all by itself.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 17 / 25

Multiplication

How do we multiply?

Multiplicand: 10110111
Multiplier: * 10011101

10110111

+ 00000000
+ 10110111
+ 10110111
+ 10110111
+ 00000000
+ 00000000
+ 10110111

Product: 111000000111011

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 18 / 25

Multiplication

For two n-bit numbers, how long does it take in parallel?

Multiplication by 1 is a copy, taking Θ(1) depth

There are n additions

Divide-and-conquer therefore takes Θ(log n) additions

Each addition takes Θ(log n) depth

Total depth is therefore Θ
(

(log n)2
)

...can we do better? :-) How?

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 19 / 25

Multiplication

Carry-save addition: reduce every a + b + c into r + s in parallel:

Compute all carry bits r independently
⇒ This is just OR, so Θ(1) depth

Compute all sums-excluding-carries s independently
⇒ This is just XOR, so Θ(1) depth

Recurse on new r1 + s1 + r2 + s2 + . . . until final r + s is obtained.
⇒ This takes Θ(log n) levels of recursion

Compute final sum in additional Θ(log n) depth

Total depth is therefore Θ(log n)!2

2Simplified; detailed analysis is a little tedious. See here.
Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 20 / 25

Parallel Prefix

There isn’t too much special about addition from basic arithmetic.

Often the same tricks apply to any binary operator
⊕

that is associative!

Parallel addition can be generalized this way, called “parallel prefix”:

Say we want to compute cumulative sum of 1, 2, 3, ...

First, group into binary tree: (((1 2) (3 4)) ((5 6) (7 8))) ...

Then, evaluate sums for all nodes recursively toward root

Finally, propagate sums back down from root to right-hand children

This is a very flexible operation, useful as a basic parallel building block.
(More notes can be found on MIT’s website.)

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 21 / 25

MapReduce

A common pattern for parallel data processing is:

from functools import reduce

outputs = map(lambda x: ..., inputs)
result = reduce(lambda r, x: ..., outputs, initial)

map you have already seen: it transforms elements

reduce is anything like +, × to summarize elements

Transformations assumed to ignore order (to allow parallelism)

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 22 / 25

MapReduce

Google recognized this and built a fast framework called MapReduce for
automatically parallelizing & distributing such code across a cluster

MapReduce: Simplified Data Processing on Large Clusters
by Jeffrey Dean and Sanjay Ghemawat (2004)

System and method for efficient large-scale data processing
U.S. Patent 7,650,331

Fault-tolerance is handled automatically (why is this possible?)

Apache Hadoop later developed as an open-source implementation

“MapReduce” became a general programming model for distributed data
processing

Spark (Matei Zaharia, UCB AMPLab, now at Databricks) developed as a
faster implementation that processes data in RAM

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 23 / 25

MapReduce

Parallel map is easy in Python!

>>> import math
>>> from multiprocessing.pool import Pool
>>> pool = Pool()
>>> pool.map(math.sqrt, [1, 2, 3, 4])
[1.0, 1.4142135623730951, 1.7320508075688772, 2.0]

This a higher-level threading construct that makes your life simpler.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 24 / 25

http://people.clarkson.edu/~linh/algorithms/carry%20save%20addition.pdf
https://courses.csail.mit.edu/18.337/2004/book/Lecture_03-Parallel_Prefix.pdf
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=/netahtml/PTO/srchnum.htm&r=1&f=G&l=50&s1=7,650,331.PN.&OS=PN/7,650,331&RS=PN/7,650,331

MapReduce

Not everything fits into a MapReduce model

Inputs may be generated on the fly

Mappers might depend on many inputs

Mappers may need lots of communication

Computation may not be nicely “layered” at all

...

Parallel & distributed computation still an open research problem.

Mehrdad Niknami (UC Berkeley) CS 61A/CS 98-52 25 / 25

	Preliminaries
	History

	Concurrency
	Communication

	Algorithms
	Addition
	Multiplication
	Parallel Prefix

	Paradigms
	MapReduce
	Other

